Jacobi Eigenvalue Algorithm - Applications For Real Symmetric Matrices

Applications For Real Symmetric Matrices

When the eigenvalues (and eigenvectors) of a symmetric matrix are known, the following values are easily calculated.

Singular values
The singular values of a (square) matrix A are the square roots of the (non-negative) eigenvalues of . In case of a symmetric matrix S we have of, hence the singular values of S are the absolute values of the eigenvalues of S
2-norm and spectral radius
The 2-norm of a matrix A is the norm based on the Euclidean vectornorm, i.e. the largest value when x runs through all vectors with . It is the largest singular value of A. In case of a symmetric matrix it is largest absolute value of its eigenvectors and thus equal to its spectral radius.
Condition number
The condition number of a nonsingular matrix A is defined as . In case of a symmetric matrix it is the absolute value of the quotient of the largest and smallest eigenvalue. Matrices with large condition numbers can cause numerically unstable results: small perturbation can result in large errors. Hilbert matrices are the most famous ill-conditioned matrices. For example, the fourth-order Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 × 108.
Rank
A matrix A has rank r if it has r columns that are linearly independent while the remaining columns are linearly dependent on these. Equivalently, r is the dimension of the range of A. Furthermore it is the number of nonzero singular values.
In case of a symmetric matrix r is the number of nonzero eigenvalues. Unfortunately because of rounding errors numerical approximations of zero eigenvalues may not be zero (it may also happen that a numerical approximation is zero while the true value is not). Thus one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero.
Pseudo-inverse
The pseudo inverse of a matrix A is the unique matrix for which AX and XA are symmetric and for which AXA = A, XAX = X holds. If A is nonsingular, then '.
When procedure jacobi (S, e, E) is called, then the relation holds where Diag(e) denotes the diagonal matrix with vector e on the diagonal. Let denote the vector where is replaced by if and by 0 if is (numerically close to) zero. Since matrix E is orthogonal, it follows that the pseudo-inverse of S is given by .
Least squares solution
If matrix A does not have full rank, there may not be a solution of the linear system Ax = b. However one can look for a vector x for which is minimal. The solution is . In case of a symmetric matrix S as before, one has .
Matrix exponential
From one finds where exp e is the vector where is replaced by . In the same way, f(S) can be calculated in an obvious way for any (analytic) function f.
Linear differential equations
The differential equation x' = Ax, x(0) = a has the solution x(t) = exp(t A) a. For a symmetric matrix S, it follows that . If is the expansion of a by the eigenvectors of S, then .
Let be the vector space spanned by the eigenvectors of S which correspond to a negative eigenvalue and analogously for the positive eigenvalues. If then i.e. the equilibrium point 0 is attractive to x(t). If then, i.e. 0 is repulsive to x(t). and are called stable and unstable manifolds for S. If a has components in both manifolds, then one component is attracted and one component is repelled. Hence x(t) approaches as .

Read more about this topic:  Jacobi Eigenvalue Algorithm

Famous quotes containing the word real:

    The real accomplishment of modern science and technology consists in taking ordinary men, informing them narrowly and deeply and then, through appropriate organization, arranging to have their knowledge combined with that of other specialized but equally ordinary men. This dispenses with the need for genius. The resulting performance, though less inspiring, is far more predictable.
    John Kenneth Galbraith (b. 1908)