Definition
Let and be two Riemannian manifolds, and let be a diffeomorphism. Then is called an isometry (or isometric isomorphism) if
where denotes the pullback of the rank (0, 2) metric tensor by . Equivalently, in terms of the push-forward, we have that for any two vector fields on (i.e. sections of the tangent bundle ),
If is a local diffeomorphism such that, then is called a local isometry.
Read more about this topic: Isometry (Riemannian Geometry)
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)