Definition
Given a graph Λ (for example, a d-dimensional lattice), per each lattice site j ∈ Λ there is a discrete variable σj such that σj ∈{+1, −1}. A spin configuration, σ = (σj)j∈Λ is an assignment of spin value to each lattice site.
For any two adjacent sites i, j ∈Λ one has an interaction Jij, and a site i ∈ Λ has an external magnetic field hi. The energy of a configuration σ is given by the Hamiltonian Function
where the first sum is over pairs of adjacent spins (every pair is counted once).
where β = (kBT)-1
and the normalization constant
is the partition function. For a function f of the spins ("observable"), one denotes by
the expectation (mean value) of f.
The configuration probabilities represent the probability of being in a state with configuration σ in equilibrium.
Read more about this topic: Ising Model
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)