Ionosphere - History

History

Guglielmo Marconi received the first trans-Atlantic radio signal on December 12, 1901, in St. John's, Newfoundland (now in Canada) using a 152.4 m (500 ft) kite-supported antenna for reception. The transmitting station in Poldhu, Cornwall used a spark-gap transmitter to produce a signal with a frequency of approximately 500 kHz and a power of 100 times more than any radio signal previously produced. The message received was three dits, the Morse code for the letter S. To reach Newfoundland the signal would have to bounce off the ionosphere twice. Dr. Jack Belrose has recently contested this, however, based on theoretical and experimental work. However, Marconi did achieve transatlantic wireless communications beyond a shadow of doubt in Glace Bay, Nova Scotia one year later.

In 1902, Oliver Heaviside proposed the existence of the Kennelly-Heaviside Layer of the ionosphere which bears his name. Heaviside's proposal included means by which radio signals are transmitted around the Earth's curvature. Heaviside's proposal, coupled with Planck's law of black body radiation, may have hampered the growth of radio astronomy for the detection of electromagnetic waves from celestial bodies until 1932 (and the development of high frequency radio transceivers). Also in 1902, Arthur Edwin Kennelly discovered some of the ionosphere's radio-electrical properties.

In 1912, the U.S. Congress imposed the Radio Act of 1912 on amateur radio operators, limiting their operations to frequencies above 1.5 MHz (wavelength 200 meters or smaller). The government thought those frequencies were useless. This led to the discovery of HF radio propagation via the ionosphere in 1923.

In 1926, Scottish physicist Robert Watson-Watt introduced the term ionosphere in a letter published only in 1969 in Nature:

We have in quite recent years seen the universal adoption of the term ‘stratosphere’..and..the companion term ‘troposphere’... The term ‘ionosphere’, for the region in which the main characteristic is large scale ionisation with considerable mean free paths, appears appropriate as an addition to this series.

Edward V. Appleton was awarded a Nobel Prize in 1947 for his confirmation in 1927 of the existence of the ionosphere. Lloyd Berkner first measured the height and density of the ionosphere. This permitted the first complete theory of short wave radio propagation. Maurice V. Wilkes and J. A. Ratcliffe researched the topic of radio propagation of very long radio waves in the ionosphere. Vitaly Ginzburg has developed a theory of electromagnetic wave propagation in plasmas such as the ionosphere.

In 1962 the Canadian satellite Alouette 1 was launched to study the ionosphere. Following its success were Alouette 2 in 1965 and the two ISIS satellites in 1969 and 1971, further AEROS -A and -B in 1972 and 1975, all for measuring the ionosphere.

Read more about this topic:  Ionosphere

Famous quotes containing the word history:

    I believe that history has shape, order, and meaning; that exceptional men, as much as economic forces, produce change; and that passé abstractions like beauty, nobility, and greatness have a shifting but continuing validity.
    Camille Paglia (b. 1947)

    They are a sort of post-house,where the Fates
    Change horses, making history change its tune,
    Then spur away o’er empires and o’er states,
    Leaving at last not much besides chronology,
    Excepting the post-obits of theology.
    George Gordon Noel Byron (1788–1824)

    The history of the genesis or the old mythology repeats itself in the experience of every child. He too is a demon or god thrown into a particular chaos, where he strives ever to lead things from disorder into order.
    Ralph Waldo Emerson (1803–1882)