Iodine - Production

Production

Of the several places in which iodine occurs in nature, only two sources are useful commercially: the caliche, found in Chile, and the iodine-containing brines of gas and oil fields, especially in Japan and the United States. The caliche contains sodium nitrate, which is the main product of the mining activities, and small amounts of sodium iodate and sodium iodide. In the extraction of sodium nitrate, the sodium iodate and sodium iodide are extracted. The high concentration of iodine in the caliche and the extensive mining made Chile the largest producer of iodine in 2007.

Most other producers use natural occurring brine for the production of iodine. The Japanese Minami Kanto gas field east of Tokyo and the American Anadarko Basin gas field in northwest Oklahoma are the two largest sources for iodine from brine. The brine has a temperature of over 60°C owing to the depth of the source. The brine is first purified and acidified using sulfuric acid, then the iodide present is oxidized to iodine with chlorine. An iodine solution is produced, but is dilute and must be concentrated. Air is blown into the solution, causing the iodine to evaporate, then it is passed into an absorbing tower containing acid where sulfur dioxide is added to reduce the iodine. The hydrogen iodide (HI) is reacted with chlorine to precipitate the iodine. After filtering and purification the iodine is packed.

2 HI + Cl2 → I2↑ + 2 HCl
I2 + 2 H2O + SO2 → 2 HI + H2SO4
2 HI + Cl2 → I2↓ + 2 HCl

The production of iodine from seawater via electrolysis is not used owing to the sufficient abundance of iodine-rich brine. Another source of iodine is kelp, used in the 18th and 19th centuries, but it is no longer economically viable.

Commercial samples often contain high concentrations of impurities, which can be removed by sublimation. The element may also be prepared in an ultra-pure form through the reaction of potassium iodide with copper(II) sulfate, which gives copper(II) iodide initially. That decomposes spontaneously to copper(I) iodide and iodine:

Cu2+ + 2 I– → CuI2
2 CuI2 → 2 CuI + I2

There are also other methods of isolating this element in the laboratory, for example, the method used to isolate other halogens: oxidation of the iodide in hydrogen iodide (often made in situ with an iodide and sulfuric acid) by manganese dioxide (see below in Descriptive chemistry).

Read more about this topic:  Iodine

Famous quotes containing the word production:

    ... if the production of any commodity necessitates the sacrifice of human life, society should do without that commodity, but it can not do without that life.
    Emma Goldman (1869–1940)

    An art whose limits depend on a moving image, mass audience, and industrial production is bound to differ from an art whose limits depend on language, a limited audience, and individual creation. In short, the filmed novel, in spite of certain resemblances, will inevitably become a different artistic entity from the novel on which it is based.
    George Bluestone, U.S. educator, critic. “The Limits of the Novel and the Limits of the Film,” Novels Into Film, Johns Hopkins Press (1957)

    Constant revolutionizing of production ... distinguish the bourgeois epoch from all earlier ones. All fixed, fast-frozen relations, with their train of ancient and venerable prejudices are swept away, all new-formed ones become antiquated before they can ossify. All that is solid melts into air, all that is holy is profaned, and man is at last compelled to face with sober senses, his real conditions of life, and his relations with his kind.
    Karl Marx (1818–1883)