Involution (mathematics) - General Properties

General Properties

Any involution is a bijection.

The identity map is a trivial example of an involution. Common examples in mathematics of more detailed involutions include multiplication by −1 in arithmetic, the taking of reciprocals, complementation in set theory and complex conjugation. Other examples include circle inversion, rotation by a half-turn, and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher.

The number of involutions, including the identity involution, on a set with n = 0, 1, 2, … elements is given by a recurrence relation found by Heinrich August Rothe in 1800:

a0 = a1 = 1;
an = an − 1 + (n − 1)an − 2, for n > 1.

The first few terms of this sequence are 1, 1, 2, 4, 10, 26, 76, 232 (sequence A000085 in OEIS); these numbers are called the telephone numbers, and they also count the number of Young tableaux with a given number of cells.

Read more about this topic:  Involution (mathematics)

Famous quotes containing the words general and/or properties:

    The bond between a man and his profession is similar to that which ties him to his country; it is just as complex, often ambivalent, and in general it is understood completely only when it is broken: by exile or emigration in the case of one’s country, by retirement in the case of a trade or profession.
    Primo Levi (1919–1987)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)