In the field of mathematics known as functional analysis, the invariant subspace problem for a complex Banach space H of dimension > 1 is the question whether every bounded linear operator T : H → H has a non-trivial closed T-invariant subspace (a closed linear subspace W of H which is different from {0} and H such that T(W) ⊆ W).
To find a "counterexample" to the invariant subspace problem, means to answer affirmatively the following equivalent question: does there exist a bounded linear operator T : H → H such that for every non-zero vector x, the vector space generated by the sequence {T n(x) : n ≥ 0} is norm dense in H? Such operators are called cyclic.
For the most important case of Hilbert spaces H this is still open (as of 2010), though Per Enflo showed that the invariant subspace problem is false for some Banach spaces.
Read more about Invariant Subspace Problem: Known Special Cases
Famous quotes containing the word problem:
“The great problem of American life [is] the riddle of authority: the difficulty of finding a way, within a liberal and individualistic social order, of living in harmonious and consecrated submission to something larger than oneself.... A yearning for self-transcendence and submission to authority [is] as deeply rooted as the lure of individual liberation.”
—Wilfred M. McClay, educator, author. The Masterless: Self and Society in Modern America, p. 4, University of North Carolina Press (1994)