Invariant Measure - Examples

Examples

  • Consider the real line R with its usual Borel σ-algebra; fix aR and consider the translation map Ta : RR given by:
Then one-dimensional Lebesgue measure λ is an invariant measure for Ta.
  • More generally, on n-dimensional Euclidean space Rn with its usual Borel σ-algebra, n-dimensional Lebesgue measure λn is an invariant measure for any isometry of Euclidean space, i.e. a map T : RnRn that can be written as
for some n × n orthogonal matrix A ∈ O(n) and a vector bRn.
  • The invariant measure in the first example is unique up to trivial renormalization with a constant factor. This does not have to be necessarily the case: Consider a set consisting of just two points and the identity map which leaves each point fixed. Then any probability measure is invariant. Note that S trivially has a decomposition into T-invariant components {A} and {B}.
  • The measure of circular angles in degrees or radians is invariant under rotation. Similarly, the measure of hyperbolic angle is invariant under squeeze mapping.
  • Area measure in the Euclidean plane is invariant under 2 × 2 real matrices with determinant 1, also known as the special linear group SL(2,R).
  • Every locally compact group has a Haar measure that is invariant under the group action.

Read more about this topic:  Invariant Measure

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)