Invariant Measure - Definition

Definition

Let (X, Σ) be a measurable space and let f be a measurable function from X to itself. A measure μ on (X, Σ) is said to be invariant under f if, for every measurable set A in Σ,

In terms of the push forward, this states that f(μ) = μ.

The collection of measures (usually probability measures) on X that are invariant under f is sometimes denoted Mf(X). The collection of ergodic measures, Ef(X), is a subset of Mf(X). Moreover, any convex combination of two invariant measures is also invariant, so Mf(X) is a convex set; Ef(X) consists precisely of the extreme points of Mf(X).

In the case of a dynamical system (X, T, φ), where (X, Σ) is a measurable space as before, T is a monoid and φ : T × XX is the flow map, a measure μ on (X, Σ) is said to be an invariant measure if it is an invariant measure for each map φt : XX. Explicitly, μ is invariant if and only if

Put another way, μ is an invariant measure for a sequence of random variables (Zt)t≥0 (perhaps a Markov chain or the solution to a stochastic differential equation) if, whenever the initial condition Z0 is distributed according to μ, so is Zt for any later time t.

Read more about this topic:  Invariant Measure

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)