Invariant Differential Operator - Invariance On Homogeneous Spaces

Invariance On Homogeneous Spaces

Let M = G/H be a homogeneous space for a Lie group G and a Lie subgroup H. Every representation gives rise to a vector bundle

Sections can be identified with

In this form the group G acts on sections via

Now let V and W be two vector bundles over M. Then a differential operator

that maps sections of V to sections of W is called invariant if

for all sections in and elements g in G. All linear invariant differential operators on homogeneous parabolic geometries, i.e. when G is semi-simple and H is a parabolic subgroup, are given dually by homomorphisms of generalized Verma modules.

Read more about this topic:  Invariant Differential Operator

Famous quotes containing the words homogeneous and/or spaces:

    If we Americans are to survive it will have to be because we choose and elect and defend to be first of all Americans; to present to the world one homogeneous and unbroken front, whether of white Americans or black ones or purple or blue or green.... If we in America have reached that point in our desperate culture when we must murder children, no matter for what reason or what color, we don’t deserve to survive, and probably won’t.
    William Faulkner (1897–1962)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)