Introduction To Special Relativity - Invariance of Length: The Euclidean Picture

Invariance of Length: The Euclidean Picture

In special relativity, space and time are joined into a unified four-dimensional continuum called spacetime. To gain a sense of what spacetime is like, we must first look at the Euclidean space of classical Newtonian physics. This approach to explaining the theory of special relativity begins with the concept of "length".

In everyday experience, it seems that the length of objects remains the same no matter how they are rotated or moved from place to place; as a result the simple length of an object doesn't appear to change or is invariant. However, as is shown in the illustrations below, what is actually being suggested is that length seems to be invariant in a three-dimensional coordinate system.

The length of a line in a two-dimensional Cartesian coordinate system is given by Pythagoras' theorem:

One of the basic theorems of vector algebra is that the length of a vector does not change when it is rotated. However, a closer inspection tells us that this is only true if we consider rotations confined to the plane. If we introduce rotation in the third dimension, then we can tilt the line out of the plane. In this case the projection of the line on the plane will get shorter. Does this mean the line's length changes? – obviously not. The world is three-dimensional and in a 3D Cartesian coordinate system the length is given by the three-dimensional version of Pythagoras's theorem:

This is invariant under all rotations. The apparent violation of invariance of length only happened because we were "missing" a dimension. It seems that, provided all the directions in which an object can be tilted or arranged are represented within a coordinate system, the length of an object does not change under rotations. With time and space considered to be outside the realm of physics itself, under classical mechanics a 3-dimensional coordinate system is enough to describe the world.

Note that invariance of length is not ordinarily considered a principle or law, not even a theorem. It is simply a statement about the fundamental nature of space itself. Space as we ordinarily conceive it is called a three-dimensional Euclidean space, because its geometrical structure is described by the principles of Euclidean geometry. The formula for distance between two points is a fundamental property of a Euclidean space, it is called the Euclidean metric tensor (or simply the Euclidean metric). In general, distance formulas are called metric tensors.

Note that rotations are fundamentally related to the concept of length. In fact, one may define length or distance to be that which stays the same (is invariant) under rotations, or define rotations to be that which keep the length invariant. Given any one, it is possible to find the other. If we know the distance formula, we can find out the formula for transforming coordinates in a rotation. If, on the other hand, we have the formula for rotations then we can find out the distance formula.

Read more about this topic:  Introduction To Special Relativity

Famous quotes containing the word picture:

    As a general truth, it is safe to say that any picture that produces a moral impression is a bad picture.
    Edmond De Goncourt (1822–1896)