Interval (music) - Size of Intervals Used in Different Tuning Systems

Size of Intervals Used in Different Tuning Systems

Number of
semitones
Name 5-limit tuning
(pitch ratio)
Comparison of interval width (in cents)
5-limit tuning Pythagorean
tuning
1/4-comma
meantone
Equal
temperament
0 Perfect unison 1:1 0 0 0 0
1 Minor second 16:15 112 90 117 100
2 Major second 9:8
10:9
204
182
204 193 200
3 Minor third 6:5
75:64
32:27
316
(wolf) 275
294
294
318
310
(wolf) 269
300
4 Major third 5:4
512:405
32:25
81:64
386
406
(wolf) 427
408
408
384
386
(wolf) 427
400
5 Perfect fourth 4:3
675:512
27:20
498
478
520
498
(wolf) 522
503
(wolf) 462
500
6 Augmented fourth
Diminished fifth
45:32
64:45
590
610
612
588
579
621
600
7 Perfect fifth 3:2
40:27
1024:675
702
680
722
702
(wolf) 678
697
(wolf) 738
700
8 Minor sixth 8:5 814 792 814 800
9 Major sixth 5:3 884 906 890 900
10 Minor seventh 9:5
16:9
1018
996
996 1007 1000
11 Major seventh 15:8 1088 1110 1083 1100
12 Perfect octave 2:1 1200 1200 1200 1200

In this table, the interval widths used in four different tuning systems are compared. To facilitate comparison, just intervals as provided by 5-limit tuning (see symmetric scale n.1) are shown in bold font, and the values in cents are rounded to integers. Notice that in each of the non-equal tuning systems, by definition the width of each type of interval (including the semitone) changes depending on the note from which the interval starts. This is the price paid for seeking just intonation. However, for the sake of simplicity, for some types of interval the table shows only one value (the most often observed one).

In 1/4-comma meantone, by definition 11 perfect fifths have a size of approximately 697 cents (700−ε cents, where ε ≈ 3.42 cents); since the average size of the 12 fifths must equal exactly 700 cents (as in equal temperament), the other one must have a size of about 738 cents (700+11ε, the wolf fifth or diminished sixth); 8 major thirds have size about 386 cents (400−4ε), 4 have size about 427 cents (400+8ε, actually diminished fourths), and their average size is 400 cents. In short, similar differences in width are observed for all interval types, except for unisons and octaves, and they are all multiples of ε (the difference between the 1/4-comma meantone fifth and the average fifth). A more detailed analysis is provided at 1/4-comma meantone#Size of intervals. Note that 1/4-comma meantone was designed to produce just major thirds, but only 8 of them are just (5:4, about 386 cents).

The Pythagorean tuning is characterized by smaller differences because they are multiples of a smaller ε (ε ≈ 1.96 cents, the difference between the Pythagorean fifth and the average fifth). Notice that here the fifth is wider than 700 cents, while in most meantone temperaments, including 1/4-comma meantone, it is tempered to a size smaller than 700. A more detailed analysis is provided at Pythagorean tuning#Size of intervals.

The 5-limit tuning system uses just tones and semitones as building blocks, rather than a stack of perfect fifths, and this leads to even more varied intervals throughout the scale (each kind of interval has three or four different sizes). A more detailed analysis is provided at 5-limit tuning#Size of intervals. Note that 5-limit tuning was designed to maximize the number of just intervals, but even in this system some intervals are not just (e.g., 3 fifths, 5 major thirds and 6 minor thirds are not just; also, 3 major and 3 minor thirds are wolf intervals).

The above mentioned symmetric scale 1, defined in the 5-limit tuning system, is not the only method to obtain just intonation. It is possible to construct juster intervals or just intervals closer to the equal-tempered equivalents, but most of the ones listed above have been used historically in equivalent contexts. In particular, the asymmetric version of the 5-limit tuning scale provides a juster value for the minor seventh (9:5, rather than 16:9). Moreover, the tritone (augmented fourth or diminished fifth), could have other just ratios; for instance, 7:5 (about 583 cents) or 17:12 (about 603 cents) are possible alternatives for the augmented fourth (the latter is fairly common, as it is closer to the equal-tempered value of 600 cents). The 7:4 interval (about 969 cents), also known as the harmonic seventh, has been a contentious issue throughout the history of music theory; it is 31 cents flatter than an equal-tempered minor seventh. Some assert the 7:4 is one of the blue notes used in jazz. For further details about reference ratios, see 5-limit tuning#The justest ratios.

In the diatonic system, every interval has one or more enharmonic equivalents, such as augmented second for minor third.

Read more about this topic:  Interval (music)

Famous quotes containing the words size of, size, intervals and/or systems:

    Great causes are never tried on their merits; but the cause is reduced to particulars to suit the size of the partizans, and the contention is ever hottest on minor matters.
    Ralph Waldo Emerson (1803–1882)

    Learn to shrink yourself to the size of the company you are in. Take their tone, whatever it may be, and excell in it if you can; but never pretend to give the tone. A free conversation will no more bear a dictator than a free government will.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    What is most striking in the Maine wilderness is the continuousness of the forest, with fewer open intervals or glades than you had imagined. Except the few burnt lands, the narrow intervals on the rivers, the bare tops of the high mountains, and the lakes and streams, the forest is uninterrupted.
    Henry David Thoreau (1817–1862)

    What is most original in a man’s nature is often that which is most desperate. Thus new systems are forced on the world by men who simply cannot bear the pain of living with what is. Creators care nothing for their systems except that they be unique. If Hitler had been born in Nazi Germany he wouldn’t have been content to enjoy the atmosphere.
    Leonard Cohen (b. 1934)