Intersection Numbers
It is usual to use the following notation for a distance-regular graph G. The number of vertices is n. The number of neighbors of w (that is, vertices adjacent to w) whose distance from v is i, i + 1, and i − 1 is denoted by ai, bi, and ci, respectively; these are the intersection numbers of G. Obviously, a0 = 0, c0 = 0, and b0 equals k, the degree of any vertex. If G has finite diameter, then d denotes the diameter and we have bd = 0. Also we have that ai+bi+ci= k
The numbers ai, bi, and ci are often displayed in a three-line array
called the intersection array of G. They may also be formed into a tridiagonal matrix
called the intersection matrix.
Read more about this topic: Intersection Array
Famous quotes containing the words intersection and/or numbers:
“You can always tell a Midwestern couple in Europe because they will be standing in the middle of a busy intersection looking at a wind-blown map and arguing over which way is west. European cities, with their wandering streets and undisciplined alleys, drive Midwesterners practically insane.”
—Bill Bryson (b. 1951)
“One murder makes a villain, millions a hero. Numbers sanctify, my good fellow.”
—Charlie Chaplin (18891977)