Formal Languages For First-order Logic
Given a signature σ, the corresponding formal language is known as the set of σ-formulas. Each σ-formula is built up out of atomic formulas by means of logical connectives; atomic formulas are built from terms using predicate symbols. The formal definition of the set of σ-formulas proceeds in the other direction: first, terms are assembled from the constant and function symbols together with the variables. Then, terms can be combined into an atomic formula using a predicate symbol (relation symbol) from the signature or the special predicate symbol "=" for equality (see the section "Interpreting equality" below). Finally, the formulas of the language are assembled from atomic formulas using the logical connectives and quantifiers.
Read more about this topic: Interpretation (logic), First-order Logic
Famous quotes containing the words formal, languages and/or logic:
“Good gentlemen, look fresh and merrily.
Let not our looks put on our purposes,
But bear it as our Roman actors do,
With untired spirits and formal constancy.”
—William Shakespeare (15641616)
“No doubt, to a man of sense, travel offers advantages. As many languages as he has, as many friends, as many arts and trades, so many times is he a man. A foreign country is a point of comparison, wherefrom to judge his own.”
—Ralph Waldo Emerson (18031882)
“It is the logic of our times,
No subject for immortal verse
That we who lived by honest dreams
Defend the bad against the worse.”
—Cecil Day Lewis (19041972)