Internal Rate of Return - Problems With Using Internal Rate of Return

Problems With Using Internal Rate of Return

As an investment decision tool, the calculated IRR should not be used to rate mutually exclusive projects, but only to decide whether a single project is worth investing in.

In cases where one project has a higher initial investment than a second mutually exclusive project, the first project may have a lower IRR (expected return), but a higher NPV (increase in shareholders' wealth) and should thus be accepted over the second project (assuming no capital constraints).

IRR assumes reinvestment of interim cash flows in projects with equal rates of return (the reinvestment can be the same project or a different project). Therefore, IRR overstates the annual equivalent rate of return for a project whose interim cash flows are reinvested at a rate lower than the calculated IRR. This presents a problem, especially for high IRR projects, since there is frequently not another project available in the interim that can earn the same rate of return as the first project.

When the calculated IRR is higher than the true reinvestment rate for interim cash flows, the measure will overestimate — sometimes very significantly — the annual equivalent return from the project. The formula assumes that the company has additional projects, with equally attractive prospects, in which to invest the interim cash flows.

This makes IRR a suitable (and popular) choice for analyzing venture capital and other private equity investments, as these strategies usually require several cash investments throughout the project, but only see one cash outflow at the end of the project (e.g., via IPO or M&A).

Since IRR does not consider cost of capital, it should not be used to compare projects of different duration. Modified Internal Rate of Return (MIRR) does consider cost of capital and provides a better indication of a project's efficiency in contributing to the firm's discounted cash flow.

In the case of positive cash flows followed by negative ones and then by positive ones (for example, + + − − − +) the IRR may have multiple values. In this case a discount rate may be used for the borrowing cash flow and the IRR calculated for the investment cash flow. This applies for example when a customer makes a deposit before a specific machine is built.

In a series of cash flows like (−10, 21, −11), one initially invests money, so a high rate of return is best, but then receives more than one possesses, so then one owes money, so now a low rate of return is best. In this case it is not even clear whether a high or a low IRR is better. There may even be multiple IRRs for a single project, like in the example 0% as well as 10%. Examples of this type of project are strip mines and nuclear power plants, where there is usually a large cash outflow at the end of the project.

In general, the IRR can be calculated by solving a polynomial equation. Sturm's theorem can be used to determine if that equation has a unique real solution. In general the IRR equation cannot be solved analytically but only iteratively.

When a project has multiple IRRs it may be more convenient to compute the IRR of the project with the benefits reinvested. Accordingly, MIRR is used, which has an assumed reinvestment rate, usually equal to the project's cost of capital.

It has been shown that with multiple internal rates of return, the IRR approach can still be interpreted in a way that is consistent with the present value approach provided that the underlying investment stream is correctly identified as net investment or net borrowing.

See also for a way of identifying the relevant value of the IRR from a set of multiple IRR solutions.

Despite a strong academic preference for NPV, surveys indicate that executives prefer IRR over NPV. Apparently, managers find it easier to compare investments of different sizes in terms of percentage rates of return than by dollars of NPV. However, NPV remains the "more accurate" reflection of value to the business. IRR, as a measure of investment efficiency may give better insights in capital constrained situations. However, when comparing mutually exclusive projects, NPV is the appropriate measure.

Read more about this topic:  Internal Rate Of Return

Famous quotes containing the words problems with, problems, internal, rate and/or return:

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)

    The problems of all of humanity can only be solved by all of humanity.
    Friedrich Dürrenmatt (1921–1990)

    The internal effects of a mutable policy ... poisons the blessings of liberty itself.
    James Madison (1751–1836)

    Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.
    Mary Barnett Gilson (1877–?)

    We perceive that the schemers return again and again to common sense and labor. Such is the evidence of history.
    Henry David Thoreau (1817–1862)