Intermediate Filament - Structure

Structure

The structure of proteins that form IF was first predicted by computerized analysis of the amino acid sequence of a human epidermal keratin derived from cloned cDNAs. Analysis of a second keratin sequence revealed that the two types of keratins share only about 30% amino acid sequence homology but share similar patterns of secondary structure domains. As suggested by the first model, all IF proteins appear to have a central alpha-helical rod domain that is composed of four alpha-helical segments (named as 1A, 1B, 2A and 2B) separated by three linker regions.

The N and C-termini of IF proteins are non-alpha-helical regions and show wide variation in their lengths and sequences across IF families. The basic building-block for IFs is a parallel and in-register dimer. The dimer is formed through the interaction of the rod domain to form a coiled coil. Cytoplasmic IF assemble into non-polar unit-length filaments (ULF), which then assemble into longer structures. Part of the assembly process includes a compaction step, in which ULF tighten and assume a smaller diameter. The reasons for this compaction are not well understood, and IF are routinely observed to have diameters ranging between 6 and 12 nm.

The N-terminal "head domain" binds DNA. Vimentin heads are able to alter nuclear architecture and chromatin distribution, and the liberation of heads by HIV-1 protease may play an important role in HIV-1 associated cytopathogenesis and carcinogenesis. Phosphorylation of the head region can affect filament stability. The head has been shown to interact with the rod domain of the same protein.

C-terminal "tail domain" shows extreme length variation between different IF proteins.

The anti-parallel orientation of tetramers means that, unlike microtubules and microfilaments, which have a plus end and a minus end, IFs lack polarity and cannot serve as basis for cell motility and intracellular transport.

Also, as opposed to actin or tubulin, intermediate filaments do not contain a binding site for a nucleoside triphosphate.

Cytoplasmic IF do not undergo treadmilling like microtubules and actin fibers, but they are dynamic. For a review see: .

Read more about this topic:  Intermediate Filament

Famous quotes containing the word structure:

    The syntactic component of a grammar must specify, for each sentence, a deep structure that determines its semantic interpretation and a surface structure that determines its phonetic interpretation.
    Noam Chomsky (b. 1928)

    One theme links together these new proposals for family policy—the idea that the family is exceedingly durable. Changes in structure and function and individual roles are not to be confused with the collapse of the family. Families remain more important in the lives of children than other institutions. Family ties are stronger and more vital than many of us imagine in the perennial atmosphere of crisis surrounding the subject.
    Joseph Featherstone (20th century)

    ... the structure of our public morality crashed to earth. Above its grave a tombstone read, “Be tolerant—even of evil.” Logically the next step would be to say to our commonwealth’s criminals, “I disagree that it’s all right to rob and murder, but naturally I respect your opinion.” Tolerance is only complacence when it makes no distinction between right and wrong.
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 2, ch. 2 (1962)