Integral Test For Convergence - Applications

Applications

The harmonic series


\sum_{n=1}^\infty \frac1n

diverges because, using the natural logarithm, its derivative, and the fundamental theorem of calculus, we get


\int_1^M\frac1x\,dx=\ln x\Bigr|_1^M=\ln M\to\infty
\quad\text{for }M\to\infty.

Contrary, the series


\sum_{n=1}^\infty \frac1{n^{1+\varepsilon}}

(cf. Riemann zeta function) converges for every ε > 0, because


\int_1^M\frac1{x^{1+\varepsilon}}\,dx
=-\frac1{\varepsilon x^\varepsilon}\biggr|_1^M=
\frac1\varepsilon\Bigl(1-\frac1{M^\varepsilon}\Bigr)
\le\frac1\varepsilon
\quad\text{for all }M\ge1.

Read more about this topic:  Integral Test For Convergence