Integral Element

Integral Element

In commutative algebra, an element of a commutative ring is said to be integral over, a subring of, if there is an and such that

That is to say, is a root of a monic polynomial over . If every element of B is integral over A, then it is said that B is integral over A, or equivalently B is an integral extension of A.

If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The special case of greatest interest in number theory is that of complex numbers integral over Z; in this context, they are usually called algebraic integers (e.g., ). A ring consisting of the algebraic integers of a finite extension field of the rationals is called the ring of integers of, a central object in algebraic number theory.

The set of elements of B that are integral over A is called the integral closure of A in B. It is a subring of B containing A.

In this article, the term ring will be understood to mean commutative ring with a unity.

Read more about Integral Element:  Examples, Equivalent Definitions, Integral Extensions, Integral Closure, Noether's Normalization Lemma

Famous quotes containing the words integral and/or element:

    ... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.
    Angelina Grimké (1805–1879)

    I think it is a wise course for laborers to unite to defend their interests.... I think the employer who declines to deal with organized labor and to recognize it as a proper element in the settlement of wage controversies is behind the times.... Of course, when organized labor permits itself to sympathize with violent methods or undue duress, it is not entitled to our sympathy.
    William Howard Taft (1857–1930)