Integral Domain - Field of Fractions

If R is a given integral domain, the smallest field containing R as a subring is uniquely determined up to isomorphism and is called the field of fractions or quotient field of R. It can be thought of as consisting of all fractions a/b with a and b in R and b ≠ 0, modulo an appropriate equivalence relation. The field of fractions of the integers is the field of rational numbers. The field of fractions of a field is isomorphic to the field itself.

Read more about this topic:  Integral Domain

Famous quotes containing the word field:

    Beat! beat! drums!—blow! bugles! blow!
    Through the windows—through doors—burst like a ruthless force,
    Into the solemn church, and scatter the congregation;
    Into the school where the scholar is studying;
    Leave not the bridegroom quiet—no happiness must he have now with his bride;
    Nor the peaceful farmer any peace, plough his field or gathering his
    grain;
    So fierce you whirr and pound, you drums—so shrill you bugles blow.
    Walt Whitman (1819–1892)