Integrable System - Quantum Integrable Systems

There is also a notion of quantum integrable systems. In the quantum setting, functions on phase space must be replaced by self-adjoint operators on a Hilbert space, and the notion of Poisson commuting functions replaced by commuting operators.

Since there is no clear definition of independence of operators, except for special classes, the definition of integrable system, in the quantum sense, is not yet agreed upon. The working definition that is mostly used is that there is a maximal set of commuting operators, including the Hamiltonian, and a semiclassical limit in which these operators have symbols that are independent Poisson commuting functions on the phase space.

Quantum integrable systems can be explicitly solved by Bethe Ansatz or Quantum inverse scattering method. Examples are Lieb-Liniger Model, Hubbard model and Heisenberg model (quantum).

Read more about this topic:  Integrable System

Famous quotes containing the words quantum and/or systems:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    People stress the violence. That’s the smallest part of it. Football is brutal only from a distance. In the middle of it there’s a calm, a tranquility. The players accept pain. There’s a sense of order even at the end of a running play with bodies stewn everywhere. When the systems interlock, there’s a satisfaction to the game that can’t be duplicated. There’s a harmony.
    Don Delillo (b. 1926)