Integrable System - General Dynamical Systems

General Dynamical Systems

In the context of differentiable dynamical systems, the notion of integrability refers to the existence of invariant, regular foliations; i.e., ones whose leaves are embedded submanifolds of the smallest possible dimension that are invariant under the flow. There is thus a variable notion of the degree of integrability, depending on the dimension of the leaves of the invariant foliation. This concept has a refinement in the case of Hamiltonian systems, known as complete integrability in the sense of Liouville (see below), which is what is most frequently referred to in this context.

An extension of the notion of integrability is also applicable to discrete systems such as lattices. This definition can be adapted to describe evolution equations that either are systems of differential equations or finite difference equations.

The distinction between integrable and nonintegrable dynamical systems thus has the qualitative implication of regular motion vs. chaotic motion and hence is an intrinsic property, not just a matter of whether a system can be explicitly integrated in exact form.

Read more about this topic:  Integrable System

Famous quotes containing the words general and/or systems:

    No doubt, the short distance to which you can see in the woods, and the general twilight, would at length react on the inhabitants, and make them savages. The lakes also reveal the mountains, and give ample scope and range to our thought.
    Henry David Thoreau (1817–1862)

    Not out of those, on whom systems of education have exhausted their culture, comes the helpful giant to destroy the old or to build the new, but out of unhandselled savage nature, out of terrible Druids and Berserkirs, come at last Alfred and Shakespeare.
    Ralph Waldo Emerson (1803–1882)