General Dynamical Systems
In the context of differentiable dynamical systems, the notion of integrability refers to the existence of invariant, regular foliations; i.e., ones whose leaves are embedded submanifolds of the smallest possible dimension that are invariant under the flow. There is thus a variable notion of the degree of integrability, depending on the dimension of the leaves of the invariant foliation. This concept has a refinement in the case of Hamiltonian systems, known as complete integrability in the sense of Liouville (see below), which is what is most frequently referred to in this context.
An extension of the notion of integrability is also applicable to discrete systems such as lattices. This definition can be adapted to describe evolution equations that either are systems of differential equations or finite difference equations.
The distinction between integrable and nonintegrable dynamical systems thus has the qualitative implication of regular motion vs. chaotic motion and hence is an intrinsic property, not just a matter of whether a system can be explicitly integrated in exact form.
Read more about this topic: Integrable System
Famous quotes containing the words general and/or systems:
“Pleasure is necessarily reciprocal; no one feels it who does not at the same time give it. To be pleased, one must please. What pleases you in others, will in general please them in you.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“What avails it that you are a Christian, if you are not purer than the heathen, if you deny yourself no more, if you are not more religious? I know of many systems of religion esteemed heathenish whose precepts fill the reader with shame, and provoke him to new endeavors, though it be to the performance of rites merely.”
—Henry David Thoreau (18171862)