Integer Factorization Algorithms - Prime Decomposition

Prime Decomposition

By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (A special case for 1 is not needed using an appropriate notion of the empty product.) However, the fundamental theorem of arithmetic gives no insight into how to obtain an integer's prime factorization; it only guarantees its existence.

Given a general algorithm for integer factorization, one can factor any integer down to its constituent prime factors by repeated application of this algorithm. However, this is not the case with a special-purpose factorization algorithm, since it may not apply to the smaller factors that occur during decomposition, or may execute very slowly on these values. For example, if N is the number (2521 − 1) × (2607 − 1), then trial division will quickly factor 10N as 2 × 5 × N, but will not quickly factor N into its factors.

Read more about this topic:  Integer Factorization Algorithms

Famous quotes containing the word prime:

    The prime lesson the social sciences can learn from the natural sciences is just this: that it is necessary to press on to find the positive conditions under which desired events take place, and that these can be just as scientifically investigated as can instances of negative correlation. This problem is beyond relativity.
    Ruth Benedict (1887–1948)