Infinite Skew Polyhedron - Regular Skew Polyhedra

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to regular skew polyhedra.

Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, m l-gons around a vertex, and n-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.

The regular skew polyhedra, reresented by {l,m|n}, follow this equation:

  • 2*sin(π/l)*sin(π/m)=cos(π/n)

Coxeter and Petrie found three of these that filled 3-space:

Regular skew polyhedra (partial)

{4,6|4}

{6,4|4}

{6,6|3}

There also exist chiral skew polyhedra of types {4,6}, {6,4}, and {6,6}. These skew polyhedra are vertex-transitive, edge-transitive, and face-transitive, but not mirror symmetric (Schulte 2004).

Beyond Euclidean 3-space, C. W. L. Garner determined a set of 32 regular skew polyhedra in hyperbolic 3-space, derived from the 4 regular hyperbolic honeycombs.

Read more about this topic:  Infinite Skew Polyhedron

Famous quotes containing the word regular:

    A regular council was held with the Indians, who had come in on their ponies, and speeches were made on both sides through an interpreter, quite in the described mode,—the Indians, as usual, having the advantage in point of truth and earnestness, and therefore of eloquence. The most prominent chief was named Little Crow. They were quite dissatisfied with the white man’s treatment of them, and probably have reason to be so.
    Henry David Thoreau (1817–1862)