Industrial Ecology - Principles

Principles

One of the central principles of Industrial Ecology is the view that societal and technological systems are bounded within the biosphere, and do not exist outside of it. Ecology is used as a metaphor due to the observation that natural systems reuse materials and have a largely closed loop cycling of nutrients. Industrial Ecology approaches problems with the hypothesis that by using similar principles as natural systems, industrial systems can be improved to reduce their impact on the natural environment as well. The table shows the general metaphor.

Biosphere Technosphere
  • Environment
  • Organism
  • Natural Product
  • Natural Selection
  • Ecosystem
  • Ecological Niche
  • Anabolism / Catabolism
  • Mutation and Selection
  • Succession
  • Adaptation
  • Food Web
  • Market
  • Company
  • Industrial Product
  • Competition
  • Eco-Industrial Park
  • Market Niche
  • Manufacturing / Waste Management
  • Design for Environment
  • Economic Growth
  • Innovation
  • Product Life Cycle

The Kalundborg industrial park is located in Denmark. This industrial park is special because companies reuse each others' waste (which then becomes by-products). For example, the Energy E2 Asnæs Power Station produces gypsum as a by product of the electricity generation process; this gypsum becomes a resource for the BPB Gyproc A/S which produces plasterboards. This is one example of a system inspired by the biosphere-technosphere metaphor: in ecosystems, the waste from one organism is used as inputs to other organisms; in industrial systems, waste from a company is used as a resource by others.

Apart from the direct benefit of incorporating waste into the loop, the use of an eco-industrial park can be a means of making renewable energy generating plants, like Solar PV, more economical and environmentally friendly. In essence, this assists the growth of the renewable energy industry and the environmental benefits that come with replacing fossil-fuels.

IE examines societal issues and their relationship with both technical systems and the environment. Through this holistic view, IE recognizes that solving problems must involve understanding the connections that exist between these systems, various aspects cannot be viewed in isolation. Often changes in one part of the overall system can propagate and cause changes in another part. Thus, you can only understand a problem if you look at its parts in relation to the whole. Based on this framework, IE looks at environmental issues with a systems thinking approach.

Take a city for instance. A city can be divided into commercial areas, residential areas, offices, services, infrastructures, etc. These are all sub-systems of the 'big city’ system. Problems can emerge in one sub-system, but the solution has to be global. Let’s say the price of housing is rising dramatically because there is too high a demand for housing. One solution would be to build new houses, but this will lead to more people living in the city, leading to the need of more infrastructure like roads, schools, more supermarkets, etc. This system is a simplified interpretation of reality whose behaviors can be ‘predicted’.

In many cases, the systems IE deals with are complex systems. Complexity makes it difficult to understand the behavior of the system and may lead to rebound effects. Due to unforeseen behavioral change of users or consumers, a measure taken to improve environmental performance does not lead to any improvement or may even worsen the situation. For instance, in big cities, traffic can become problematic. Let's imagine the government wants to reduce air pollution and makes a policy stating that only cars with an even license plate number can drive on Tuesdays and Thursdays. Odd license plate numbers can drive on Wednesdays and Fridays. Finally, the other days, both cars are allowed on the roads. The first effect could be that people buy a second car, with a specific demand for license plate numbers, so they can drive every day. The rebound effect is that, the days when all cars are allowed to drive, some inhabitants now use both cars (whereas they only had one car to use before the policy). The policy did obviously not lead to environmental improvement but even made air pollution worse.

Moreover, life cycle thinking is also a very important principle in industrial ecology. It implies that all environmental impacts caused by a product, system, or project during its life cycle are taken into account. In this context life cycle includes

  • Raw material extraction
  • Material processing
  • Manufacture
  • Use
  • Maintenance
  • Disposal

The transport necessary between these stages is also taken into account as well as, if relevant, extra stages such as reuse, remanufacture, and recycle. Adopting a life cycle approach is essential to avoid shifting environmental impacts from one life cycle stage to another. This is commonly referred to as problem shifting. For instance, during the re-design of a product, one can choose to reduce its weight, thereby decreasing use of resources. However, it is possible that the lighter materials used in the new product will be more difficult to dispose of. The environmental impacts of the product gained during the extraction phase are shifted to the disposal phase. Overall environmental improvements are thus null.

A final and important principle of IE is its integrated approach or multidisciplinarity. IE takes into account three different disciplines: social sciences (including economics), technical sciences and environmental sciences. The challenge is to merge them into a single approach.

Read more about this topic:  Industrial Ecology

Famous quotes containing the word principles:

    In her present ignorance, woman’s religion, instead of making her noble and free, by the wrong application of great principles of right and justice, has made her bondage but more certain and lasting, her degradation more hopeless and complete.
    Elizabeth Cady Stanton (1815–1902)

    Custom is our nature.... What are our natural principles but principles of custom?
    Blaise Pascal (1623–1662)

    Our national determination to keep free of foreign wars and foreign entanglements cannot prevent us from feeling deep concern when ideals and principles that we have cherished are challenged.
    Franklin D. Roosevelt (1882–1945)