Incandescent Light Bulb - Construction

Construction

Incandescent light bulbs consist of an air-tight glass enclosure (the envelope, or bulb) with a filament of tungsten wire inside the bulb, through which an electric current is passed. Contact wires and a base with two (or more) conductors provide electrical connections to the filament. Incandescent light bulbs usually contain a stem or glass mount anchored to the bulb's base that allows the electrical contacts to run through the envelope without air or gas leaks. Small wires embedded in the stem in turn support the filament and its lead wires.

The bulb is filled with an inert gas such as argon (93%) and nitrogen (7%) to reduce evaporation of the filament and prevent its oxidation at a pressure of about 70 kPa (0.7 atm). Early lamps, and some small modern lamps used only a vacuum to protect the filament from oxygen.

An electric current heats the filament to typically 2,000 to 3,300 K (3,140 to 5,480 °F)), well below tungsten's melting point of 3,695 K (6,191 °F). Filament temperatures depend on the filament type, shape, size, and amount of current drawn. The heated filament emits light that approximates a continuous spectrum. The useful part of the emitted energy is visible light, but most energy is given off as heat in the near-infrared wavelengths.

Three-way light bulbs have two filaments and three conducting contacts in their bases. The filaments share a common ground, and can be lit separately or together. Common wattages include 30–70–100, 50–100–150, and 100–200–300, with the first two numbers referring to the individual filaments, and the third giving the combined wattage.

Most light bulbs have either clear or coated glass. The coated glass bulbs have a white powdery substance on the inside called kaolin. Kaolin, or kaolinite, is a white, chalky clay in a very fine powder form, that is blown in and electrostaticlly deposited on the interior of the bulb. It diffuses the light emitted from the filament, producing a more gentle and evenly distributed light. Manufacturers may add pigments to the kaolin to adjust the characteristics of the final light emitted from the bulb. Kaolin diffused bulbs are used extensively in interior lighting because of their comparatively gentle light. Other kinds of colored bulbs are also made, including the various colors used for "party bulbs," Christmas tree lights and other decorative lighting. These are created by staining the glass with a dopant; which is often a metal like cobalt (blue) or chromium (green). Neodymium-containing glass is sometimes used to provide a more natural-appearing light.

  1. Outline of Glass bulb
  2. Low pressure inert gas (argon, nitrogen, krypton, xenon)
  3. Tungsten filament
  4. Contact wire (goes out of stem)
  5. Contact wire (goes into stem)
  6. Support wires (one end embedded in stem; conduct no current)
  7. Stem (glass mount)
  8. Contact wire (goes out of stem)
  9. Cap (sleeve)
  10. Insulation (vitrite)
  11. Electrical contact

Many arrangements of electrical contacts are used. Large lamps may have a screw base (one or more contacts at the tip, one at the shell) or a bayonet base (one or more contacts on the base, shell used as a contact or used only as a mechanical support). Some tubular lamps have an electrical contact at either end. Miniature lamps may have a wedge base and wire contacts, and some automotive and special purpose lamps have screw terminals for connection to wires. Contacts in the lamp socket allow the electric current to pass through the base to the filament. Power ratings for incandescent light bulbs range from about 0.1 watt to about 10,000 watts.

The glass bulb of a general service lamp can reach temperatures between 200 and 260 °C (392 and 500 °F). Lamps intended for high power operation or used for heating purposes will have envelopes made of hard glass or fused quartz.

Read more about this topic:  Incandescent Light Bulb

Famous quotes containing the word construction:

    No real “vital” character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the author’s personality, developing by internal necessity as much as by external addition.
    —T.S. (Thomas Stearns)

    There’s no art
    To find the mind’s construction in the face:
    He was a gentleman on whom I built
    An absolute trust.
    William Shakespeare (1564–1616)

    There is, I think, no point in the philosophy of progressive education which is sounder than its emphasis upon the importance of the participation of the learner in the formation of the purposes which direct his activities in the learning process, just as there is no defect in traditional education greater than its failure to secure the active cooperation of the pupil in construction of the purposes involved in his studying.
    John Dewey (1859–1952)