In-gel Digestion - In-gel Digestion

In-gel Digestion

Afterwards the eponymous step of the method is performed, the in-gel digestion of the proteins. By this procedure, the protein is cut enzymatically into a limited number of shorter fragments. These fragments are called peptides and allow for the identification of the protein with their characteristic mass and pattern. The serine protease trypsin is the most common enzyme used in protein analytics. Trypsin cuts the peptide bond specifically at the carboxyl end of the basic aminoacids arginine and lysine. If there is an acidic amino acid like aspartic acid or glutamic acid in direct neighborhood to the cutting site, the rate of hydrolysis is diminished, a proline C-terminal to the cutting site inhibits the hydrolysis completely.

An undesirable side effect of the use of proteolytic enzymes is the self digestion of the protease. To avoid this, in the past Ca2+-ions were added to the digestion buffer. Nowadays most suppliers offer modified trypsin where selective methylation of the lysines limits the autolytic activity to the arginine cutting sites. Unmodified trypsin has its highest activity between 35°C and 45°C. After the modification, the optimal temperature is changed to the range of 50°C to 55°C. Other enzymes used for in-gel digestion are the endoproteases Lys-C, Glu-C, Asp-N and Lys-N. These proteases cut specifically at only one amino acid e.g. Asp-N cuts n-terminal of aspartic acid. Therefore a lower number of longer peptides is obtained.

The analysis of the complete primary sequence of a protein using only one protease is usually not possible. In those cases the digestion of the target protein in several approaches with different enzymes is recommended. The resulting overlapping peptides permit the assembly of the complete sequence of the protein.

For the digestion the proteins fixed in the matrix of the gel have to be made accessible for the protease. The permeation of the enzyme to the gel is believed to be facilitated by the dehydration of the gel pieces by treatment with acetonitrile and subsequent swelling in the digestion buffer containing the protease. This procedure relies on the presumption that the protease permeates to the gel by the process of swelling. Different studies about the penetration of the enzymes to the gel showed the process to be almost completely driven by diffusion. The drying of the gel does not seem to support the process. Therefore, the improvement of the in-gel digestion has to be achieved by the reduction of the way of the enzyme to its substrate e.g. by cutting the gel to pieces as small as possible.

Usually, the in-gel digestion is run as an overnight process. For the use of trypsin as protease and a temperature of 37°C the time of incubation found in most protocols is 12-15 h. However, experiments about the duration of the digestion process showed that after 3 h there is enough material for successful mass spectrometric analysis. Furthermore, the optimisation of the conditions for the protease in temperature and pH allows for the completion of the digestion of a sample in 30 min.

Surfactant (detergents) can aid in the solubilization and denaturing of proteins in the gel and thereby shorten digestion times and increase protein cleavage and the number and amount of extracted peptides, especially for lipophilic proteins such as membrane proteins. Cleavable detergents are detergents that are cleaved after digestion, often under acidic conditions. This makes the addition of detergents compatible with mass spectrometry.

Read more about this topic:  In-gel Digestion

Famous quotes containing the word digestion:

    The supposition that it was possible for any woman to be so mean-spirited as not at least to wish to tear out her rival’s eyes was too hard for the digestion of the Cry.
    Sarah Fielding (1710–1768)