Impact Depth - Applications

Applications

  • Projectile: Full metal projectiles should be made of a material with a very high density, like uranium (19.1 g/cm³) or lead (11.3 g/cm³). According to Newton's approximation, a full metal projectile made of uranium will pierce through roughly 2.5 times its own length of steel armor.
  • Shaped charge, Bazooka: For a shaped charge (anti-tank) to pierce through steel plates, it is essential that the explosion generates a long heavy metal jet (in a shaped charge for anti-tank use, the explosion generates a high speed metal jet from the cone shaped metal lining). This jet may then be viewed as the impactor of Newton's approximation.
  • Meteorite: As may be concluded from the air pressure, the atmosphere's material is equivalent to about 10 m of water. Since ice has about the same density as water, an ice cube from space travelling at 15 km/s or so must have a length of 10 m to reach the surface of the earth at high speed. A smaller ice cube will be stopped in mid-air and explode. An ice cube with a diameter of 50 m or more, however, may also be stopped in mid-air, as long as it comes in at a very low angle and thus has to pierce through a lot of atmosphere. The Tunguska event is sometimes explained this way. An iron meteorite with a length of 1.3 m would punch through the atmosphere, a smaller one would be stopped in the air and drop down by the gravitational pull.
  • Impactor, Bunker buster: Solid impactors can be used instead of nuclear warheads to penetrate bunkers. According to Newton's approximation, a uranium projectile at high speed and 1 m in length would punch its way through 6 m of rock (density 3 g/cm³) before coming to a stop.

Read more about this topic:  Impact Depth