A regular homotopy between two immersions f and g from a manifold M to a manifold N is defined to be a differentiable function H : M × → N such for all t in the function Ht : M → N defined by Ht(x) = H(x, t) for all x ∈ M is an immersion, with H0 = f, H1 = g. A regular homotopy is thus a homotopy through immersions.
Read more about this topic: Immersion (mathematics)
Famous quotes containing the word regular:
“While youre playing cards with a regular guy or having a bite to eat with him, he seems a peaceable, good-humoured and not entirely dense person. But just begin a conversation with him about something inedible, politics or science, for instance, and he ends up in a deadend or starts in on such an obtuse and base philosophy that you can only wave your hand and leave.”
—Anton Pavlovich Chekhov (18601904)