Imidacloprid - Environmental Fate

Environmental Fate

The main routes of dissipation of imidacloprid in the environment are aqueous photolysis (half-life = 1–4 hours) and plant uptake. The major photo-metabolites include imidacloprid desnitro, imidacloprid olefine, imidacloprid urea, and five minor metabolites. The end product of photodegradation is chloronicotinic acid (CNA) and then ultimately carbon dioxide. Since imidacloprid has a low vapor pressure, it normally does not volatilize readily.

Imidacloprid breaks down rapidly in water in the presence of light (half-life = 1–4 hours) but is persistent in water in the absence of light. It has a water solubility of .61 g/L. which is relatively high. In the dark, at pH between 5 and 7, it breaks down very slowly, and at pH 9, the half-life is about 1 year. In soil under aerobic conditions, imidacloprid is persistent with half-lives on the order of 1–3 years. Major soil metabolites include imidacloprid nitrosimine, imidacloprid desnitro, hydroxynicotinic acid, and imidacloprid urea, which ultimately degrade to chloronicotinic acid, CO2, and bound residues.

Imidacloprid is unstable in sunlit water and it quickly degrades. In the soil it strongly binds to organic matter. When not exposed to light, imidacloprid and dinotefuran break down slowly in water, and thus have the potential to persist in groundwater for extended periods. In surveys of groundwater, imidacloprid was usually not detected. When detected, it was present at very low levels, mostly at concentrations less than 1 part per billion (ppb) with a maximum of 7 ppb, which are below levels of concern for human health. The detections have generally occurred in areas with porous rocky or sandy soils with little organic matter, where the risk of leaching is high — and/or where the water table was close to the surface.

According to standards set by the environmental ministry of Canada, if used correctly (e.g., at recommended rates, without irrigation, and when heavy rainfall is not predicted), imidacloprid does not characteristically leach into the deeper soil layers despite its high water solubility (Rouchaud et al. 1994; Tomlin 2000; Krohn and Hellpointner 2002). In a series of field trials conducted by Rouchaud et al. (1994, 1996), in which imidacloprid was applied to sugar beet plots, it was consistently demonstrated that no detectable leaching of imidacloprid to the 10–20 cm soil layer occurred. Imidacloprid was applied to a corn field in Minnesota, and no imidacloprid residues were found in sample column segments below the 0-15.2 cm depth segment (Rice et al. 1991, as reviewed in Mulye 1995).

Based on its high water solubility (0.5-0.6 g/L) and persistence, both the U.S. Environmental Protection Agency and the Pest Management Regulatory Agency in Canada consider imidacloprid to have a high potential to run off into surface water and to leach into ground water and thus warn not to apply in areas where soils are permeable, particularly where the water table is shallow -

A 2012 water monitoring study by the state of California, performed by collecting agricultural runoff during the growing seasons of 2010 and 2011, found imidacloprid in 89% of samples, with levels ranging from 0.1-3.2 µg/L. 19% of the samples exceeded the EPA threshold for chronic toxicity for aquatic invertebrates of 1.05 µg/L. The authors also point out that Canadian and European guidelines are much lower (0.23 µg/L and 0.067 µg/L, respectively) and were exceeded in 73% and 88% of the samples, respectively. The authors concluded that "imidacloprid commonly moves offsite and contaminates surface waters at concentrations that could harm aquatic "

Read more about this topic:  Imidacloprid

Famous quotes containing the word fate:

    We are hedged about, we think, by accident and circumstance; now we creep as in a dream, and now again we run, as if there were a fate in it, and all things thwarted or assisted.
    Henry David Thoreau (1817–1862)