Ideal (set Theory) - Relationships Among Ideals

Relationships Among Ideals

If I and J are ideals on X and Y respectively, I and J are Rudin–Keisler isomorphic if they are the same ideal except for renaming of the elements of their underlying sets (ignoring negligible sets). More formally, the requirement is that there be sets A and B, elements of I and J respectively, and a bijection φ : X \ AY \ B, such that for any subset C of X, C is in I if and only if the image of C under φ is in J.

If I and J are Rudin–Keisler isomorphic, then P(X) / I and P(Y) / J are isomorphic as Boolean algebras. Isomorphisms of quotient Boolean algebras induced by Rudin–Keisler isomorphisms of ideals are called trivial isomorphisms.

Read more about this topic:  Ideal (set Theory)

Famous quotes containing the word ideals:

    Institutional psychiatry is a continuation of the Inquisition. All that has really changed is the vocabulary and the social style. The vocabulary conforms to the intellectual expectations of our age: it is a pseudo-medical jargon that parodies the concepts of science. The social style conforms to the political expectations of our age: it is a pseudo-liberal social movement that parodies the ideals of freedom and rationality.
    Thomas Szasz (b. 1920)