Operations On Ideals
Given ideals I and J on underlying sets X and Y respectively, one forms the product I×J on the Cartesian product X×Y, as follows: For any subset A ⊆ X×Y,
That is, a set is negligible in the product ideal if only a negligible collection of x-coordinates correspond to a non-negligible slice of A in the y-direction. (Perhaps clearer: A set is positive in the product ideal if positively many x-coordinates correspond to positive slices.)
An ideal I on a set X induces an equivalence relation on P(X), the powerset of X, considering A and B to be equivalent (for A, B subsets of X) if and only if the symmetric difference of A and B is an element of I. The quotient of P(X) by this equivalence relation is a Boolean algebra, denoted P(X) / I (read "P of X mod I").
To every ideal there is a corresponding filter, called its dual filter. If I is an ideal on X, then the dual filter of I is the collection of all sets X \ A, where A is an element of I. (Here X \ A denotes the relative complement of A in X; that is, the collection of all elements of X that are not in A.)
Read more about this topic: Ideal (set Theory)
Famous quotes containing the words operations and/or ideals:
“A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.”
—Jean Baudrillard (b. 1929)
“We want our children to become warm, decent human beings who reach out generously to those in need. We hope they find values and ideals to give their lives purpose so they contribute to the world and make it a better place because they have lived in it. Intelligence, success, and high achievement are worthy goals, but they mean nothing if our children are not basically kind and loving people.”
—Neil Kurshan (20th century)