Operations On Ideals
Given ideals I and J on underlying sets X and Y respectively, one forms the product I×J on the Cartesian product X×Y, as follows: For any subset A ⊆ X×Y,
That is, a set is negligible in the product ideal if only a negligible collection of x-coordinates correspond to a non-negligible slice of A in the y-direction. (Perhaps clearer: A set is positive in the product ideal if positively many x-coordinates correspond to positive slices.)
An ideal I on a set X induces an equivalence relation on P(X), the powerset of X, considering A and B to be equivalent (for A, B subsets of X) if and only if the symmetric difference of A and B is an element of I. The quotient of P(X) by this equivalence relation is a Boolean algebra, denoted P(X) / I (read "P of X mod I").
To every ideal there is a corresponding filter, called its dual filter. If I is an ideal on X, then the dual filter of I is the collection of all sets X \ A, where A is an element of I. (Here X \ A denotes the relative complement of A in X; that is, the collection of all elements of X that are not in A.)
Read more about this topic: Ideal (set Theory)
Famous quotes containing the words operations and/or ideals:
“It may seem strange that any road through such a wilderness should be passable, even in winter, when the snow is three or four feet deep, but at that season, wherever lumbering operations are actively carried on, teams are continually passing on the single track, and it becomes as smooth almost as a railway.”
—Henry David Thoreau (18171862)
“My own ideals for the university are those of a genuine democracy and serious scholarship. These two, indeed, seem to go together.”
—Woodrow Wilson (18561924)