Iconoscope - History

History

In July 1925, Zworykin submitted a patent application for a "Television System" that includes a charge storage plate constructed of a thin layer of isolating material (aluminum oxide) sandwiched between a screen (300 mesh) and a colloidal deposit of photoelectric material (potassium hydride) consisting of isolated globules. The following description can be read between lines 1 and 9 in page 2: The photoelectric material, such as potassium hydride, is evaporated on the aluminum oxide, or other insulating medium, and treated so as to form a colloidal deposit of potassium hydride consisting of minute globules. Each globule is very active photoelectrically and constitutes, to all intents and purposes, a minute individual photoelectric cell. Its first image was transmitted in late summer of 1925, and a patent was issued in 1928. However the quality of the transmitted image failed to impress to H P Davis, the general manager of Westinghouse, and Zworykin was asked to work on something useful.

A patent for a television system was also filed by Zworykin in 1923, but this file is not a reliable bibliographic source because extensive revisions were done before a patent was issued fifteen years later and the file itself was divided into two patents in 1931. In 1926, the Hungarian engineer Kálmán Tihanyi explained in detail that the principle of "storing" electrical charges in proportion to the amount of light received throughout each scanning cycle results in a much more sensitive video camera tube. Although his 1926 application was never acted upon, two year later, in 1928, Tihanyi applied for a patent for a refined "Television Apparatus" that is essentially an iconoscope.

The first practical iconoscope was constructed in 1931 by Sanford Essig, when he accidentally left one silvered mica sheet in the oven too long. Upon examination with a microscope, he noticed that the silver layer had broken up into a myriad of tiny isolated silver globules. He also noticed that: the tiny dimension of the silver droplets would enhance the image resolution of the iconoscope by a quantum leap. As head of television development at Radio Corporation of America (RCA), Zworykin submitted a patent application in November 1931, and it was issued in 1935. Nevertheless, Zworykin's team was not the only engineering group working on devices that use a charge stage plate. In 1932, Tedham and McGee under the supervision of Isaac Shoenberg applied for a patent for a new device they dubbed "the emitron", a 405-line broadcasting service employing the emitron began at studios in Alexandra Palace in 1936, and a patent was issued in the USA in 1937. One year latter, in 1933, Philo Farnsworth also applied for a patent for a device that use a charge storage plate and a low-velocity electron scanning beam, a patent was issued in 1937, but Farnsworth did not know that the low-velocity scanning beam must land perpendicular to the target and he never actually built such a tube.

The iconoscope was presented to the general public in a press conference in June 1933, and two detailed technical papers were published in September and October of the same year. Unlike the Farnsworth image dissector, the Zworykin iconoscope was much more sensitive, useful with an illumination on the target between 4ft-c (43lx) and 20ft-c (215lx). It was also easier to manufacture and produced a very clear image. The iconoscope was the primary camera tube used in American broadcasting from 1936 until 1946, when it was replaced by the image orthicon tube.

On the other side of the atlantic ocean, the British team formed by engineers Lubszynski, Rodda, and MacGee developed the super-emitron (or super-iconoscope) in 1934, this new device is between ten and fifteen times more sensitive than the original emitron and iconoscope, and it was used for a public broadcasting by the BBC, for the first time, on Armistice Day 1937.

Read more about this topic:  Iconoscope

Famous quotes containing the word history:

    the future is simply nothing at all. Nothing has happened to the present by becoming past except that fresh slices of existence have been added to the total history of the world. The past is thus as real as the present.
    Charlie Dunbar Broad (1887–1971)

    Three million of such stones would be needed before the work was done. Three million stones of an average weight of 5,000 pounds, every stone cut precisely to fit into its destined place in the great pyramid. From the quarries they pulled the stones across the desert to the banks of the Nile. Never in the history of the world had so great a task been performed. Their faith gave them strength, and their joy gave them song.
    William Faulkner (1897–1962)

    There is no example in history of a revolutionary movement involving such gigantic masses being so bloodless.
    Leon Trotsky (1879–1940)