Hypergeometric Distribution - Order of Draws

Order of Draws

The probability of drawing any sequence of white and black marbles (the hypergeometric distribution) depends only on the number of white and black marbles, not on the order in which they appear; i.e., it is an exchangeable distribution. As a result, the probability of drawing a white marble in the draw is

This can be shown by induction. First, it is certainly true for the first draw that:

.

Also, we can show that by writing:


\begin{align} P(W_{n+1}) & = {\sum_{k=0}^n}P(W_{n+1}|k)f(k;N,m,n)\\ & = {\sum_{k=0}^n}\frac{m-k}{N-n}f(k;N,m,n) \\ & = {\sum_{k=0}^n}\frac{m-k}{N-n}\frac{\binom mk \binom {N-m} {n-k}}{\binom Nn} \\ & = \frac{1}{(N-n)\binom Nn} \left \{ m\sum_{k=0}^n \binom mk \binom {N-m} {n-k} - \sum_{k=0}^n k\binom mk \binom {N-m} {n-k}\right \} \\ & = \frac{1}{(N-n)\binom Nn}\left\{ m\binom Nn - \sum_{k=1}^n k\frac{m}{k} \binom {m-1}{k-1} \binom {N-m} {n-k}\right \} \\ & = \frac{m}{(N-n)\binom Nn}\left\{ \binom Nn - \sum_{k=1}^n \binom {m-1}{k-1} \binom {N-1-(m-1)} {n-1-(k-1)}\right \} \\ & = \frac{m}{(N-n)\binom Nn}\left\{ \binom Nn - \binom {N-1}{n-1}\right \} \\ & = \frac{m}{(N-n)\binom Nn}\left\{ \binom Nn - \frac{n}{N}\binom Nn\right \} \\ & = \frac{m}{(N-n)}\left\{ 1 - \frac{n}{N} \right\} = \frac{m}{N}
\end{align}
,

which makes it true for every draw.

A simpler proof than the one above is the following:

By symmetry each of the marbles has the same chance to be drawn in the draw. In addition, according to the sum rule, the chance of drawing a white marble in the draw can be calculated by summing the chances of each individual white marble being drawn in the . These two observations imply that if for example the number of white marbles at the outset is 3 times the number of black marbles, then also the chance of a white marble being drawn in the draw is 3 times as big as a black marble being drawn in the draw. In the general case we have white marbles and black marbles at the outset. So

.

Since in the draw either a white or a black marble needs to be drawn, we also know that

.

Combining these two equations immediately yields

.

Read more about this topic:  Hypergeometric Distribution

Famous quotes containing the words order of, order and/or draws:

    Man is clearly made to think. It is his whole dignity and his whole merit; and his whole duty is to think as he ought. And the order of thought is to begin with ourselves, and with our Author and our end.
    Blaise Pascal (1623–1662)

    The man who looks for security, even in the mind, is like a man who would chop off his limbs in order to have artificial ones which will give him no pain or trouble.
    Henry Miller (1891–1980)

    A cow does not know how much milk it has until the milkman starts working on it. Then it looks round in surprise and sees the pail full to the brim. In the same way a writer has no idea how much he has to say till his pen draws it out of him. Thoughts will then appear on the paper that he is amazed to find that he possessed. “How brilliant!” he says to himself. “I had no idea I was so intelligent.” But the reader may not be so im pressed.
    Gerald Branan (1894–1987)