The Hypergeometric Series
The hypergeometric function is defined for |z| < 1 by the power series
provided that c does not equal 0, −1, −2, ... . Here (q)n is the (rising) Pochhammer symbol, which is defined by:
The series terminates if either a or b is a nonpositive integer. For complex arguments z with |z| ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 0 and 1.
Read more about this topic: Hypergeometric Differential Equation
Famous quotes containing the word series:
“The womans world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.”
—Jeanine Basinger (b. 1936)