Examples of Non-hyperbolic Groups
- The free rank 2 abelian group Z2 is not hyperbolic.
- More generally, any group which contains Z2 as a subgroup is not hyperbolic. In particular, lattices in higher rank semisimple Lie groups and the fundamental groups π1(S3−K) of nontrivial knot complements fall into this category and therefore are not hyperbolic.
- Baumslag–Solitar groups B(m,n) and any group that contains a subgroup isomorphic to some B(m,n) fail to be hyperbolic (since B(1,1) = Z2, this generalizes the previous example).
- A non-uniform lattice in rank 1 semisimple Lie groups is hyperbolic if and only if the associated symmetric space is the hyperbolic plane.
Read more about this topic: Hyperbolic Group
Famous quotes containing the words examples of, examples and/or groups:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“Some of the greatest and most lasting effects of genuine oratory have gone forth from secluded lecture desks into the hearts of quiet groups of students.”
—Woodrow Wilson (18561924)