Hyperbolic Function - Hyperbolic Functions For Complex Numbers

Hyperbolic Functions For Complex Numbers

Since the exponential function can be defined for any complex argument, we can extend the definitions of the hyperbolic functions also to complex arguments. The functions sinh z and cosh z are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers:

\begin{align} e^{i x} &= \cos x + i \;\sin x \\ e^{-i x} &= \cos x - i \;\sin x
\end{align}

so:

\begin{align} \cosh ix &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\ \sinh ix &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh ix &= i \tan x \\ \cosh x &= \cos ix \\ \sinh x &= - i \sin ix \\ \tanh x &= - i \tan ix
\end{align}

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period ( for hyperbolic tangent and cotangent).

Hyperbolic functions in the complex plane

Read more about this topic:  Hyperbolic Function

Famous quotes containing the words functions, complex and/or numbers:

    Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.
    Friedrich Nietzsche (1844–1900)

    In the case of all other sciences, arts, skills, and crafts, everyone is convinced that a complex and laborious programme of learning and practice is necessary for competence. Yet when it comes to philosophy, there seems to be a currently prevailing prejudice to the effect that, although not everyone who has eyes and fingers, and is given leather and last, is at once in a position to make shoes, everyone nevertheless immediately understands how to philosophize.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Individually, museums are fine institutions, dedicated to the high values of preservation, education and truth; collectively, their growth in numbers points to the imaginative death of this country.
    Robert Hewison (b. 1943)