Hyper Engine - Design and Development

Design and Development

Improvements in construction and lighter materials had already delivered some benefits on the way to higher power-to-weight ratios. Aluminum was being introduced in place of steel as the quality and strength of aluminum alloys improved during the 1930s; this lowered engine weight noticeably, but not enough to achieve a 50% overall improvement. To reach that goal, the power of the engine would also need to be increased. Power is a combination of energy and the rate it is delivered, so to improve the power-to-weight ratio, one would need to increase the operating pressures of the engine, the operating speed, or a combination of both. Further gains could be made by eliminating losses like friction, combustion inefficiencies and scavenging losses, delivering more of the theoretical power to the propeller.

The USAAC engineers determined that it would study all three improvements. Before long, they concluded that increasing the combustion temperature and scavenging efficiency promised the greatest increases of all of the possibilities. To meet that goal, increasing engine speed seemed to be the most attractive solution. However, there were a number of practical problems that were impeding progress in these areas.

Increasing the compression ratio is an easy change that improves the mean effective pressure (MEP), but leads to engine knocking from inconsistent detonation. Uncontrolled, knock can damage the engine and was a major block on the way to improved power settings. This change would also increase the operating temperatures, which presented a problem with the valves. Valves were already reaching temperatures that would cause pre-ignition of the fuel as it flowed past them.

Increasing operational speed is also, theoretically, a simple change to the engine design. However, at high operating speeds the valves do not completely close before the cam opens them again, a problem called "valve float". Valve float allows gases in the cylinder to escape through the partially open valve, reducing the engine efficiency. Increasing valve spring pressure to close the valves faster led to rapid cam wear and increased friction, reducing overall performance by more than any horsepower gained.

As valves were a key issue in both approaches to improved performance, they had been a major area of research in the 1920s and 30s. In the UK, Harry Ricardo had written an influential paper on the sleeve valve system for exactly these reasons, claiming it was the only way forward. He had some success in selling this idea, most notably to Bristol Aeroplane Company Engines, where Roy Fedden became "a believer". Ricardo's friendly competitor, Frank Halford, designed his own sleeve valve engine with Napier & Son, another prominent British engine maker.

The USAAC was not so convinced that the sleeve valve was the only solution. Ironically it was one of Ricardo's papers on the sleeve valve design that led to the USAAC's hyper engine efforts. In one late 1920s paper he claimed that the 1 hp/inĀ³ goal was impossible to achieve with poppet valve type engines. The USAAC engineering team at Wright Field decided to test this claim by beating it. They proposed an engine of about 1200 cubic inches (20 L), hoping the engine's smaller size would lead to reduced drag and hence improved range.

Read more about this topic:  Hyper Engine

Famous quotes containing the words design and/or development:

    Teaching is the perpetual end and office of all things. Teaching, instruction is the main design that shines through the sky and earth.
    Ralph Waldo Emerson (1803–1882)

    Other nations have tried to check ... the fulfillment of our manifest destiny to overspread the continent allotted by Providence for the free development of our yearly multiplying millions.
    John Louis O’Sullivan (1813–1895)