Definition
A t-(v,k,λ) orthogonal array (t ≤ k) is a λvt × k array whose entries are chosen from a set X with v points such that in every subset of t columns of the array, every t-tuple of points of X appears in exactly λ rows.
In this formal definition, provision is made for repetition of the t-tuples (λ is the number of repeats) and the number of rows is determined by the other parameters.
In many applications these parameters are given the following names:
- v is the number of levels,
- k is the number of factors,
- λvt is the number of experimental runs,
- t is the strength, and
- λ is the index.
An orthogonal array is simple if it does not contain any repeated rows.
An orthogonal array is linear if X is a finite field of order q, Fq (q a prime power) and the rows of the array form a subspace of the vector space (Fq)k.
Every linear orthogonal array is simple.
Read more about this topic: Hyper-Graeco-Latin Square Design
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)