Definition
A t-(v,k,λ) orthogonal array (t ≤ k) is a λvt × k array whose entries are chosen from a set X with v points such that in every subset of t columns of the array, every t-tuple of points of X appears in exactly λ rows.
In this formal definition, provision is made for repetition of the t-tuples (λ is the number of repeats) and the number of rows is determined by the other parameters.
In many applications these parameters are given the following names:
- v is the number of levels,
- k is the number of factors,
- λvt is the number of experimental runs,
- t is the strength, and
- λ is the index.
An orthogonal array is simple if it does not contain any repeated rows.
An orthogonal array is linear if X is a finite field of order q, Fq (q a prime power) and the rows of the array form a subspace of the vector space (Fq)k.
Every linear orthogonal array is simple.
Read more about this topic: Hyper-Graeco-Latin Square Design
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)