Hydrogeology - Calculation of Groundwater Flow

Calculation of Groundwater Flow

To use the groundwater flow equation to estimate the distribution of hydraulic heads, or the direction and rate of groundwater flow, this partial differential equation (PDE) must be solved. The most common means of analytically solving the diffusion equation in the hydrogeology literature are:

  • Laplace, Hankel and Fourier transforms (to reduce the number of dimensions of the PDE),
  • similarity transform (also called the Boltzmann transform) is commonly how the Theis solution is derived,
  • separation of variables, which is more useful for non-Cartesian coordinates, and
  • Green's functions, which is another common method for deriving the Theis solution — from the fundamental solution to the diffusion equation in free space.

No matter which method we use to solve the groundwater flow equation, we need both initial conditions (heads at time (t) = 0) and boundary conditions (representing either the physical boundaries of the domain, or an approximation of the domain beyond that point). Often the initial conditions are supplied to a transient simulation, by a corresponding steady-state simulation (where the time derivative in the groundwater flow equation is set equal to 0).

There are two broad categories of how the (PDE) would be solved; either analytical methods, numerical methods, or something possibly in between. Typically, analytic methods solve the groundwater flow equation under a simplified set of conditions exactly, while numerical methods solve it under more general conditions to an approximation.

Read more about this topic:  Hydrogeology

Famous quotes containing the words calculation of, calculation and/or flow:

    “To my thinking” boomed the Professor, begging the question as usual, “the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.”
    “And yours,” said the P.B.
    Samuel Beckett (1906–1989)

    Common sense is the measure of the possible; it is composed of experience and prevision; it is calculation appled to life.
    Henri-Frédéric Amiel (1821–1881)

    Along the iron veins that traverse the frame of our country, beat and flow the fiery pulses of its exertion, hotter and faster every hour. All vitality is concentrated through those throbbing arteries into the central cities; the country is passed over like a green sea by narrow bridges, and we are thrown back in continually closer crowds on the city gates.
    John Ruskin (1819–1900)