Hybridoma Technology - Method

Method

Laboratory animals (mammals, e.g. mice) are first exposed to an antigen to which we are interested in isolating an antibody against. Usually this is done by a series of injections of the antigen in question, over the course of several weeks. Once splenocytes are isolated from the mammal's spleen, the B cells are fused with immortalised myeloma cells. The myeloma cells are selected beforehand to ensure they are not secreting antibody themselves and that they lack the hypoxanthine-guanine phosphoribosyltransferase (HGPRT) gene, making them sensitive to the HAT medium (see below). The fusion is accomplished using polyethylene glycol or the Sendai virus. It is performed by making the cell membranes more permeable.

Fused cells are incubated in HAT medium (hypoxanthine-aminopterin-thymidine medium) for roughly 10 to 14 days. Aminopterin blocks the pathway that allows for nucleotide synthesis. Hence, unfused myeloma cells die, as they cannot produce nucleotides by the de novo or salvage pathways because they lack HGPRT. Removal of the unfused myeloma cells is necessary because they have the potential to outgrow other cells, especially weakly established hybridomas. Unfused B cells die as they have a short life span. In this way, only the B cell-myeloma hybrids survive, since the HGPRT gene coming from the B cells is functional. These cells produce antibodies (a property of B cells) and are immortal (a property of myeloma cells). The incubated medium is then diluted into multi-well plates to such an extent that each well contains only one cell. Since the antibodies in a well are produced by the same B cell, they will be directed towards the same epitope, and are thus monoclonal antibodies.

The next stage is a rapid primary screening process, which identifies and selects only those hybridomas that produce antibodies of appropriate specificity. The hybridoma culture supernatant, secondary enzyme labeled conjugate, and chromogenic substrate, are then incubated, and the formation of a colored product indicates a positive hybridoma. Alternatively, immunocytochemical screening can also be used.

The B cell that produces the desired antibodies can be cloned to produce many identical daughter clones. Supplemental media containing interleukin-6 (such as briclone) are essential for this step. Once a hybridoma colony is established, it will continually grow in culture medium like RPMI-1640 (with antibiotics and fetal bovine serum) and produce antibodies.

Multiwell plates are used initially to grow the hybridomas, and after selection, are changed to larger tissue culture flasks. This maintains the well-being of the hybridomas and provides enough cells for cryopreservation and supernatant for subsequent investigations. The culture supernatant can yield 1 to 60 µg/ml of monoclonal antibody, which is maintained at -20 °C or lower until required.

By using culture supernatant or a purified immunoglobulin preparation, further analysis of a potential monoclonal antibody producing hybridoma can be made in terms of reactivity, specificity, and cross-reactivity.

Read more about this topic:  Hybridoma Technology

Famous quotes containing the word method:

    We have not given science too big a place in our education, but we have made a perilous mistake in giving it too great a preponderance in method in every other branch of study.
    Woodrow Wilson (1856–1924)

    Steady labor with the hands, which engrosses the attention also, is unquestionably the best method of removing palaver and sentimentality out of one’s style, both of speaking and writing.
    Henry David Thoreau (1817–1862)

    Women are denied masturbation even more severely than men and that’s another method of control—they’re not taught to please themselves.... Most women—it takes them a while to warm up to the “situation” but once they get into it, I’m sure they’re going to get just as hooked as—well, everyone I know is!
    Lydia Lunch (b. 1959)