HSL and HSV - Other Cylindrical-coordinate Color Models

Other Cylindrical-coordinate Color Models

Fig. 23. Munsell’s balanced color sphere, 1900, from A Color Notation, 1905. See also: Color solid

The creators of HSL and HSV were far from the first to imagine colors fitting into conic or spherical shapes, with neutrals running from black to white in a central axis, and hues corresponding to angles around that axis. Similar arrangements date back to the 18th century, and continue to be developed in the most modern and scientific models. A pair of the most influential older models are Philipp Otto Runge’s 1810 Farbenkugel (color sphere), and the early-20th-century Munsell color system. Albert Munsell began with a spherical arrangement in his 1905 book A Color Notation, but he wished to properly separate color-making attributes into separate dimensions, which he called hue, value, and chroma, and after taking careful measurements of perceptual responses, he realized that no symmetrical shape would do, so he reorganized his system into a lumpy blob.

Munsell’s system became extremely popular, the de facto reference for American color standards – used not only for specifying the color of paints and crayons, but also, e.g., electrical wire, beer, and soil color – because it was organized based on perceptual measurements, specified colors via an easily learned and systematic triple of numbers, because the color chips sold in the Munsell Book of Color covered a wide gamut and remained stable over time (rather than fading), and because it was effectively marketed by Munsell’s Company. In the 1940s, the Optical Society of America made extensive measurements, and adjusted the arrangement of Munsell colors, issuing a set of "renotations". The trouble with the Munsell system for computer graphics applications is that its colors are not specified via any set of simple equations, but only via its foundational measurements: effectively a lookup table. Converting from RGB ↔ Munsell requires interpolating between that table’s entries, and is extremely computationally expensive in comparison with converting from RGB ↔ HSL or RGB ↔ HSV which only requires a few simple arithmetic operations.

In densitometry, a model quite similar to the hue defined above is used for describing colors of CMYK process inks. In 1953, Frank Preucil developed two geometric arrangements of hue, the "Preucil hue circle" and the "Preucil hue hexagon", analogous to our H and H2, respectively, but defined relative to idealized cyan, yellow, and magenta ink colors. The Preucil hue error of an ink indicates the difference in the "hue circle" between its color and the hue of the corresponding idealized ink color. The grayness of an ink is m/M, where m and M are the minimum and maximum among the amounts of idealized cyan, magenta, and yellow in a density measurement.

The Swedish Natural Color System (NCS), widely used in Europe, takes a similar approach to the Ostwald bicone shown earlier. Because it attempts to fit color into a familiarly shaped solid based on "phenomenological" instead of photometric or psychological characteristics, it suffers from some of the same disadvantages as HSL and HSV: in particular, its lightness dimension differs from perceived lightness, because it forces colorful yellow, red, green, and blue into a plane.

The International Commission on Illumination (CIE) developed the XYZ model for describing the colors of light spectra in 1931, but its goal was to match human visual metamerism, rather than to be perceptually uniform, geometrically. In the 1960s and 70s, attempts were made to transform XYZ colors into a more relevant geometry, influenced by the Munsell system. These efforts culminated in the 1976 CIELUV and CIELAB models. The dimensions of these models – (L*, u*, v*) and (L*, a*, b*), respectively – are cartesian, based on the opponent process theory of color, but both are also often described using polar coordinates – (L*, C*uv, h*uv) or (L*, C*ab, h*ab), where L* is lightness, C* is chroma, and h* is hue angle. Officially, both CIELAB and CIELUV were created for their color difference metrics ∆E*ab and ∆E*uv, particularly for use defining color tolerances, but both have become widely used as color order systems and color appearance models, including in computer graphics and computer vision. For example, gamut mapping in ICC color management is usually performed in CIELAB space, and Adobe Photoshop includes a CIELAB mode for editing images. CIELAB and CIELUV geometries are dramatically more perceptually relevant than RGB, HSL, HSV, or XYZ, but are not perfect, and in particular have trouble adapting to unusual lighting conditions.

The CIE’s most recent model, CIECAM02 (CAM stands for "color appearance model"), is more theoretically sophisticated and computationally complex than earlier models. Its aims are to fix several of the problems with models such as CIELAB and CIELUV, and to explain not only responses in carefully controlled experimental environments, but also to model the color appearance of real-world scenes. Its dimensions J (lightness), C (chroma), and h (hue) define a polar-coordinate geometry.

Read more about this topic:  HSL And HSV

Famous quotes containing the words color and/or models:

    The pills are a mother, but better,
    every color and as good as sour balls.
    I’m on a diet from death.
    Anne Sexton (1928–1974)

    The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.
    Woodrow Wilson (1856–1924)