Hot Bulb Engine - Operation and Working Cycle

Operation and Working Cycle

The hot-bulb engine shares its basic layout with nearly all other internal combustion engines, in that it has a piston, inside a cylinder, connected to a flywheel via a connecting rod and crankshaft. Akroyd-Stuart's original engine operated on the four-stroke cycle (induction, compression, power and exhaust) and Hornsby continued to build engines to this design, as did several other British manufacturers such as Blackstone and Crossley. Manufacturers in Europe, Scandinavia and in the USA built engines working on the two-stroke cycle with crankcase scavenging. The latter type formed the majority of hot-bulb engine production. The flow of gases through the engine is controlled by valves in four-stroke engines, and by the piston covering and uncovering ports in the cylinder wall in two-strokes.

In the hot-bulb engine combustion takes place in a separated combustion chamber, the "vaporizer" (also called the "hot bulb"), usually mounted on the cylinder head, into which fuel is sprayed. It is connected to the cylinder by a narrow passage and is heated by the combustion while running; an external flame such as a blow-lamp or slow-burning wick is used for starting (on later models sometimes electric heating or pyrotechnics was used). Another method is the inclusion of a spark plug and vibrator coil ignition. The engine could be started on petrol and switched over to oil after it had warmed to running temperature.

The pre-heating time depends on the engine design, the type of heating used and the ambient temperature, but generally ranges from 2–5 minutes (for most engines in a temperate climate) to as much as half an hour (if operating in extreme cold or the engine is especially large). The engine is then turned over, usually by hand but sometimes by compressed air or an electric motor.

Once the engine is running, the heat of compression and ignition maintains the hot-bulb at the necessary temperature and the blow-lamp or other heat source can be removed. From this point the engine requires no external heat and requires only a supply of air, fuel oil and lubricating oil to run. However, under low power the bulb could cool off too much, and a throttle can cut down the cold fresh air supply. Also, as the engine's load increased, so does the temperature of the bulb, causing the ignition period to advance; to counteract pre-ignition, water is dripped into the air intake. Equally, if the load on the engine is low, combustion temperatures may not be sufficient to maintain the temperature of the hot-bulb. Many hot-bulb engines cannot be run off-load without auxiliary heating for this reason.

The fact that the engine can be left unattended for long periods while running made hot bulb engines a popular choice for applications requiring a steady power output such as farm tractors, generators, pumps and canal boat propulsion.

Read more about this topic:  Hot Bulb Engine

Famous quotes containing the words operation, working and/or cycle:

    An absolute can only be given in an intuition, while all the rest has to do with analysis. We call intuition here the sympathy by which one is transported into the interior of an object in order to coincide with what there is unique and consequently inexpressible in it. Analysis, on the contrary, is the operation which reduces the object to elements already known.
    Henri Bergson (1859–1941)

    I am not responsible for the successful working of the machinery of society.
    Henry David Thoreau (1817–1862)

    The lifelong process of caregiving, is the ultimate link between caregivers of all ages. You and I are not just in a phase we will outgrow. This is life—birth, death, and everything in between.... The care continuum is the cycle of life turning full circle in each of our lives. And what we learn when we spoon-feed our babies will echo in our ears as we feed our parents. The point is not to be done. The point is to be ready to do again.
    Paula C. Lowe (20th century)