Hopf Algebra - Representation Theory

Representation Theory

Let A be a Hopf algebra, and let M and N be A-modules. Then, MN is also an A-module, with

for mM, nN and . Furthermore, we can define the trivial representation as the base field K with

for mK. Finally, the dual representation of A can be defined: if M is an A-module and M* is its dual space, then

where fM* and mM.

The relationship between Δ, ε, and S ensure that certain natural homomorphisms of vector spaces are indeed homomorphisms of A-modules. For instance, the natural isomorphisms of vector spaces MMK and MKM are also isomorphisms of A-modules. Also, the map of vector spaces M* ⊗ MK with fmf(m) is also a homomorphism of A-modules. However, the map MM* → K is not necessarily a homomorphism of A-modules.

Read more about this topic:  Hopf Algebra

Famous quotes containing the word theory:

    Osteopath—One who argues that all human ills are caused by the pressure of hard bone upon soft tissue. The proof of his theory is to be found in the heads of those who believe it.
    —H.L. (Henry Lewis)