Cohomology of Lie Groups
The cohomology algebra of a Lie group is a Hopf algebra: the multiplication is provided by the cup-product, and the comultiplication
by the group multiplication G × G → G. This observation was actually a source of the notion of Hopf algebra. Using this structure, Hopf proved a structure theorem for the cohomology algebra of Lie groups.
Theorem (Hopf) Let A be a finite-dimensional, graded commutative, graded cocommutative Hopf algebra over a field of characteristic 0. Then A (as an algebra) is a free exterior algebra with generators of odd degree.
Read more about this topic: Hopf Algebra
Famous quotes containing the words lie and/or groups:
“Nature herself has not provided the most graceful end for her creatures. What becomes of all these birds that people the air and forest for our solacement? The sparrow seems always chipper, never infirm. We do not see their bodies lie about. Yet there is a tragedy at the end of each one of their lives. They must perish miserably; not one of them is translated. True, not a sparrow falleth to the ground without our Heavenly Fathers knowledge, but they do fall, nevertheless.”
—Henry David Thoreau (18171862)
“In properly organized groups no faith is required; what is required is simply a little trust and even that only for a little while, for the sooner a man begins to verify all he hears the better it is for him.”
—George Gurdjieff (c. 18771949)