Table of Homotopy Groups
Tables of homotopy groups of spheres are most conveniently organized by showing πn+k(Sn).
The following table shows many of the groups πn+k(Sn). (These tables are based on the table of homotopy groups of spheres in Toda (1962).) The stable homotopy groups are highlighted in blue, the unstable ones in red. Each homotopy group is the product of the cyclic groups of the orders given in the table, using the following conventions:
- The entry "⋅" denotes the trivial group.
- Where the entry is an integer, m, the homotopy group is the cyclic group of that order (generally written Zm).
- Where the entry is ∞, the homotopy group is the infinite cyclic group, Z.
- Where entry is a product, the homotopy group is the cartesian product (equivalently, direct sum) of the cyclic groups of those orders. Powers indicate repeated products. (Note that when a and b have no common factor, Za×Zb is isomorphic to Zab.)
Example: π19(S10) = π9+10(S10) = Z×Z2×Z2×Z2, which is denoted by ∞⋅23 in the table.
Sn → | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S≥13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
π<n(Sn) | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | |
π0+n(Sn) | 2 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ |
π1+n(Sn) | ⋅ | ⋅ | ∞ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π2+n(Sn) | ⋅ | ⋅ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π3+n(Sn) | ⋅ | ⋅ | 2 | 12 | ∞⋅12 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
π4+n(Sn) | ⋅ | ⋅ | 12 | 2 | 22 | 2 | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π5+n(Sn) | ⋅ | ⋅ | 2 | 2 | 22 | 2 | ∞ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π6+n(Sn) | ⋅ | ⋅ | 2 | 3 | 24⋅3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
π7+n(Sn) | ⋅ | ⋅ | 3 | 15 | 15 | 30 | 60 | 120 | ∞⋅120 | 240 | 240 | 240 | 240 | 240 |
π8+n(Sn) | ⋅ | ⋅ | 15 | 2 | 2 | 2 | 24⋅2 | 23 | 24 | 23 | 22 | 22 | 22 | 22 |
π9+n(Sn) | ⋅ | ⋅ | 2 | 22 | 23 | 23 | 23 | 24 | 25 | 24 | ∞⋅23 | 23 | 23 | 23 |
π10+n(Sn) | ⋅ | ⋅ | 22 | 12⋅2 | 120⋅12⋅2 | 72⋅2 | 72⋅2 | 24⋅2 | 242⋅2 | 24⋅2 | 12⋅2 | 6⋅2 | 6 | 6 |
π11+n(Sn) | ⋅ | ⋅ | 12⋅2 | 84⋅22 | 84⋅25 | 504⋅22 | 504⋅4 | 504⋅2 | 504⋅2 | 504⋅2 | 504 | 504 | ∞⋅504 | 504 |
π12+n(Sn) | ⋅ | ⋅ | 84⋅22 | 22 | 26 | 23 | 240 | ⋅ | ⋅ | ⋅ | 12 | 2 | 22 | See below |
π13+n(Sn) | ⋅ | ⋅ | 22 | 6 | 24⋅6⋅2 | 6⋅2 | 6 | 6 | 6⋅2 | 6 | 6 | 6⋅2 | 6⋅2 | |
π14+n(Sn) | ⋅ | ⋅ | 6 | 30 | 2520⋅6⋅2 | 6⋅2 | 12⋅2 | 24⋅4 | 240⋅24⋅4 | 16⋅4 | 16⋅2 | 16⋅2 | 48⋅4⋅2 | |
π15+n(Sn) | ⋅ | ⋅ | 30 | 30 | 30 | 30⋅2 | 60⋅6 | 120⋅23 | 120⋅25 | 240⋅23 | 240⋅22 | 240⋅2 | 240⋅2 | |
π16+n(Sn) | ⋅ | ⋅ | 30 | 6⋅2 | 62⋅2 | 22 | 504⋅22 | 24 | 27 | 24 | 240⋅2 | 2 | 2 | |
π17+n(Sn) | ⋅ | ⋅ | 6⋅2 | 12⋅22 | 24⋅12⋅4⋅22 | 4⋅22 | 24 | 24 | 6⋅24 | 24 | 23 | 23 | 24 | |
π18+n(Sn) | ⋅ | ⋅ | 12⋅22 | 12⋅22 | 120⋅12⋅25 | 24⋅22 | 24⋅6⋅2 | 24⋅2 | 504⋅24⋅2 | 24⋅2 | 24⋅22 | 8⋅4⋅2 | 480⋅42⋅2 | |
π19+n(Sn) | ⋅ | ⋅ | 12⋅22 | 132⋅2 | 132⋅25 | 264⋅2 | 1056⋅8 | 264⋅2 | 264⋅2 | 264⋅2 | 264⋅6 | 264⋅23 | 264⋅25 |
Sn → | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | S≥21 |
---|---|---|---|---|---|---|---|---|---|
π12+n(Sn) | 2 | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ | ⋅ |
π13+n(Sn) | 6 | ∞⋅3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
π14+n(Sn) | 16⋅2 | 8⋅2 | 4⋅2 | 22 | 22 | 22 | 22 | 22 | 22 |
π15+n(Sn) | 480⋅2 | 480⋅2 | 480⋅2 | ∞⋅480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 | 480⋅2 |
π16+n(Sn) | 2 | 24⋅2 | 23 | 24 | 23 | 22 | 22 | 22 | 22 |
π17+n(Sn) | 24 | 24 | 25 | 26 | 25 | ∞⋅24 | 24 | 24 | 24 |
π18+n(Sn) | 82⋅2 | 82⋅2 | 82⋅2 | 24⋅82⋅2 | 82⋅2 | 8⋅4⋅2 | 8⋅22 | 8⋅2 | 8⋅2 |
π19+n(Sn) | 264⋅23 | 264⋅4⋅2 | 264⋅22 | 264⋅22 | 264⋅22 | 264⋅2 | 264⋅2 | ∞⋅264⋅2 | 264⋅2 |
Read more about this topic: Homotopy Groups Of Spheres
Famous quotes containing the words table and/or groups:
“Language was vigorous because, because ... editors usually laid all the cards on the table so as to leave their hands ... free for more persuasive arguments! The citizenry at large retaliated as best they could.”
—State of Utah, U.S. public relief program (1935-1943)
“Belonging to a group can provide the child with a variety of resources that an individual friendship often cannota sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social lifeof inclusion and exclusion, conformity and independence.”
—Zick Rubin (20th century)