Homotopy Category of Chain Complexes - The Triangulated Structure

The Triangulated Structure

The shift A of a complex A is the following complex

(note that ),

where the differential is .

For the cone of a morphism f we take the mapping cone. There are natural maps

This diagram is called a triangle. The homotopy category K(A) is a triangulated category, if one defines distinguished triangles to be isomorphic (in K(A), i.e. homotopy equivalent) to the triangles above, for arbitrary A, B and f. The same is true for the bounded variants K+(A), K-(A) and Kb(A). Although triangles make sense in Kom(A) as well, that category is not triangulated with respect to these distinguished triangles; for example,

is not distinguished since the cone of the identity map is not isomorphic to the complex 0 (however, the zero map is a homotopy equivalence, so that this triangle is distinguished in K(A)). Less trivially, the rotation of a distinguished triangle is obviously not distinguished in Kom(A), but (less obviously so) is distinguished in K(A). See the references for details.

Read more about this topic:  Homotopy Category Of Chain Complexes

Famous quotes containing the word structure:

    The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently better—and so, in the fact that that structure can be demolished and yet still possess value as material.
    Friedrich Nietzsche (1844–1900)