Homotopy - Formal Definition

Formal Definition

Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function H : X × → Y from the product of the space X with the unit interval to Y such that, if xX then H(x,0) = f(x) and H(x,1) = g(x).

If we think of the second parameter of H as time then H describes a continuous deformation of f into g: at time 0 we have the function f and at time 1 we have the function g.

An alternative notation is to say that a homotopy between two continuous functions f, g : XY is a family of continuous functions ht : XY for t ∈ such that h0 = f and h1 = g, and the map tht is continuous from to the space of all continuous functions XY. The two versions coincide by setting ht(x) = H(x,t).

Read more about this topic:  Homotopy

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)