Homotopy - Formal Definition

Formal Definition

Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function H : X × → Y from the product of the space X with the unit interval to Y such that, if xX then H(x,0) = f(x) and H(x,1) = g(x).

If we think of the second parameter of H as time then H describes a continuous deformation of f into g: at time 0 we have the function f and at time 1 we have the function g.

An alternative notation is to say that a homotopy between two continuous functions f, g : XY is a family of continuous functions ht : XY for t ∈ such that h0 = f and h1 = g, and the map tht is continuous from to the space of all continuous functions XY. The two versions coincide by setting ht(x) = H(x,t).

Read more about this topic:  Homotopy

Famous quotes containing the words formal and/or definition:

    It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between “ideas” and “things,” both of which he assumes as given; he need not inquire whether either sphere is “real” or whether, in the final analysis, reality consists in their interaction.
    Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)