Homotopy - Formal Definition

Formal Definition

Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function H : X × → Y from the product of the space X with the unit interval to Y such that, if xX then H(x,0) = f(x) and H(x,1) = g(x).

If we think of the second parameter of H as time then H describes a continuous deformation of f into g: at time 0 we have the function f and at time 1 we have the function g.

An alternative notation is to say that a homotopy between two continuous functions f, g : XY is a family of continuous functions ht : XY for t ∈ such that h0 = f and h1 = g, and the map tht is continuous from to the space of all continuous functions XY. The two versions coincide by setting ht(x) = H(x,t).

Read more about this topic:  Homotopy

Famous quotes containing the words formal and/or definition:

    There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.
    Sara Lawrence Lightfoot (20th century)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)