Homotopy - Formal Definition

Formal Definition

Formally, a homotopy between two continuous functions f and g from a topological space X to a topological space Y is defined to be a continuous function H : X × → Y from the product of the space X with the unit interval to Y such that, if xX then H(x,0) = f(x) and H(x,1) = g(x).

If we think of the second parameter of H as time then H describes a continuous deformation of f into g: at time 0 we have the function f and at time 1 we have the function g.

An alternative notation is to say that a homotopy between two continuous functions f, g : XY is a family of continuous functions ht : XY for t ∈ such that h0 = f and h1 = g, and the map tht is continuous from to the space of all continuous functions XY. The two versions coincide by setting ht(x) = H(x,t).

Read more about this topic:  Homotopy

Famous quotes containing the words formal and/or definition:

    That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prized—all these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.
    Fred Rogers (20th century)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)