Formal Definition
Let X be a non-empty set and G a group. Then X is called a G-space if it is equipped with an action of G on X. Note that automatically G acts by automorphisms (bijections) on the set. If X in addition belongs to some category, then the elements of G are assumed to act as automorphisms in the same category. Thus the maps on X effected by G are structure preserving. A homogeneous space is a G-space on which G acts transitively.
Succinctly, if X is an object of the category C, then the structure of a G-space is a homomorphism:
into the group of automorphisms of the object X in the category C. The pair (X,ρ) defines a homogeneous space provided ρ(G) is a transitive group of symmetries of the underlying set of X.
Read more about this topic: Homogeneous Space
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)