Homogeneous Polynomial - History

History

Algebraic forms played an important role in nineteenth century mathematics.

The two obvious areas where these would be applied were projective geometry, and number theory (then less in fashion). The geometric use was connected with invariant theory. There is a general linear group acting on any given space of quantics, and this group action is potentially a fruitful way to classify certain algebraic varieties (for example cubic hypersurfaces in a given number of variables).

In more modern language the spaces of quantics are identified with the symmetric tensors of a given degree constructed from the tensor powers of a vector space V of dimension m. (This is straightforward provided we work over a field of characteristic zero). That is, we take the n-fold tensor product of V with itself and take the subspace invariant under the symmetric group as it permutes factors. This definition specifies how GL(V) will act.

It would be a possible direct method in algebraic geometry, to study the orbits of this action. More precisely the orbits for the action on the projective space formed from the vector space of symmetric tensors. The construction of invariants would be the theory of the co-ordinate ring of the 'space' of orbits, assuming that 'space' exists. No direct answer to that was given, until the geometric invariant theory of David Mumford; so the invariants of quantics were studied directly. Heroic calculations were performed, in an era leading up to the work of David Hilbert on the qualitative theory.

For algebraic forms with integer coefficients, generalisations of the classical results on quadratic forms to forms of higher degree motivated much investigation.

Read more about this topic:  Homogeneous Polynomial

Famous quotes containing the word history:

    No one can understand Paris and its history who does not understand that its fierceness is the balance and justification of its frivolity. It is called a city of pleasure; but it may also very specially be called a city of pain. The crown of roses is also a crown of thorns. Its people are too prone to hurt others, but quite ready also to hurt themselves. They are martyrs for religion, they are martyrs for irreligion; they are even martyrs for immorality.
    Gilbert Keith Chesterton (1874–1936)

    When the landscape buckles and jerks around, when a dust column of debris rises from the collapse of a block of buildings on bodies that could have been your own, when the staves of history fall awry and the barrel of time bursts apart, some turn to prayer, some to poetry: words in the memory, a stained book carried close to the body, the notebook scribbled by hand—a center of gravity.
    Adrienne Rich (b. 1929)

    The history of all hitherto existing society is the history of class struggles.
    Karl Marx (1818–1883)