In mathematics, a homogeneous function is a function with multiplicative scaling behaviour: if the argument is multiplied by a factor, then the result is multiplied by some power of this factor. More precisely, if ƒ : V → W is a function between two vector spaces over a field F, and k is an integer, then ƒ is said to be homogeneous of degree k if
-
(1)
for all nonzero α ∈ F and v ∈ V. This implies it has scale invariance. When the vector spaces involved are over the real numbers, a slightly more general form of homogeneity is often used, requiring only that (1) hold for all α > 0.
Homogeneous functions can also be defined for vector spaces with the origin deleted, a fact that is used in the definition of sheaves on projective space in algebraic geometry. More generally, if S ⊂ V is any subset that is invariant under scalar multiplication by elements of the field (a "cone"), then an homogeneous function from S to W can still be defined by (1).
Read more about Homogeneous Function: Positive Homogeneity, Homogeneous Distributions, Application To Differential Equations
Famous quotes containing the words homogeneous and/or function:
“O my Brothers! love your Country. Our Country is our home, the home which God has given us, placing therein a numerous family which we love and are loved by, and with which we have a more intimate and quicker communion of feeling and thought than with others; a family which by its concentration upon a given spot, and by the homogeneous nature of its elements, is destined for a special kind of activity.”
—Giuseppe Mazzini (18051872)
“My function in life is not to be a politician in Parliament: it is to get something done.”
—Bernadette Devlin (b. 1947)